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BACKGROUND 
In the epoch of the Anthropocene, human-driven changes affected the functioning of the 
Earth System. Nowadays, we need to adapt to climate changes and assure food security for 
the growing human population. Here, soil resources provide key ecosystem services and 
they need to be mapped and monitored on regional and global scale. 

The nation that destroys its soils  
destroys itself 
Frankling D. Roosevelt, Letter to all State Governors on a Uniform Soil Conservation Law (26 February, 1937) 

Source: Sustainable Development Solutions Network, United Nations, 
Solutions for sustainable agriculture and food systems, 2013. 
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Source: FAO Soil map of the World 

Problems 
• Missing data and too general information 
• Low accuracy 
• How to use soil classes for modelling environmental processes 
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e-SOTER: enhanced Soil and Terrain 
Database 

• Regional soil and terrain mapping  
• Web-based regional pilot platform  
• Data, methodologies, and applications 
• Using remote sensing to validate, augment and 

extend existing data 
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OBJECTIVE 
To exploit the use of remote (RS) and proximal sensing (PS) 
methodologies for digital soil mapping (DSM) to facilitate 
soil property mapping at regional scale. 
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Digital soil mapping 
The creation and population of spatial soil information by the use of field and 

laboratory observation methods coupled with spatial and non-spatial soil 
inference systems  
(Carré et al., 2007) 

 
1. Goal: Spatial patterns of soils across various spatial and temporal scales 
2. Local soil observations  

• Field, laboratory and PS observations 

3. Exhaustive datasets 
• Spatially explicit maps, e.g. existing soil maps or RS data & product 

4.     Statistical methods 
• Regression models 
• Data mining 
• Geostatistics  

F. Carré, A.B., McBratney, T. Mayr, L. Montanarella (2007). Digital soil 
assessments: Beyond DSM. Geoderma, 142 (1-2), 69-79.  
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Remote Sensing 

• RS is the science/ are the techniques of deriving information about the Earth’s 
land and water areas from images at a distance 

 
• It relies upon measurement of electro-magnetic (EM) energy reflected or emitted 

from the objects of interest at the surface of the Earth 
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Remote and proximal sensing 
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Remote and proximal sensing 

Absorption feature Broad bands 
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Workflow digital soil mapping (DSM) 

Source: Africa Soil Information Service, 
http://www.africasoils.net/data/digital-soil-mapping  
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Spectroscopy-supported digital soil mapping (I) 

Data collection 

Soil  
measurements 

Traditional Spectroscopy 

Fieldwork Maroc: soil profile description Fieldwork Maroc: Spectral measurements 

Laboratory measurements: X-ray diffraction Laboratory measurements: Spectral measurements 

V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr (2011). The use of remote sensing in soil and 
terrain mapping – A review. Geoderma, 162- (1-2), 1-19. doi:10.1016/j.geoderm.2010.12.018 
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What is the current state-of-art in the use of 
remote sensing for soil and terrain mapping? 

V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr (2011). The use 
of remote sensing in soil and terrain mapping – A review. Geoderma, 
162- (1-2), 1-19. doi:10.1016/j.geoderm.2010.12.018 

Use Proximal Sensing Remote sensing 

Estimating soil properties: 

Quantitative 
Qualitative 

+/- 
+ 

- 
+ 

Characterizing the landscape - + 

Spatial interpolation - + 

Associated spatial scale Point - Local Local - Global 
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Study area 

Rif Mountains 

Anti-Atlas Mountains 

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional 
scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of  
Applied Earth Observation and Geoinformation,  (21) 301-310.  doi:10.1016/j.jag.2012.07.004 
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Topography 

Fertility 

Source: Fieldwork campaign Maroc, 2010  
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MAIN FINDINGS 
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SAMPLING 
Can major soil variability at regional scale be represented by a sparse 
remote sensing-based sampling approach? 

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional 
scale by constrained Latin Hypercube Samping of remote sensing data. International Journal of  
Applied Earth Observation and Geoinformation,  (21) 301-310.  doi:10.1016/j.jag.2012.07.004 

• 2 weeks in the field 
• Few legacy data 
• 150.000 km2 
• Time & financial limitations 
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Soil-landscape paradigm (Jenny) 

Soil formation = Climate, Organisms, Relief, Parent material & Time 
(CLORPT) 

 

Reflectance + elevation represents CLORPT  
 

• Input: Satellite and elevation data as a variability measure of soils 
• Constrained by subareas, distance to the roads and steepness of the landscape 

• Cost function f(x)= areas + distance + topography + water 
• 100 sites were optimised to optimally sample the Latin Hypercube (LH) 

• Minimize cost while sampling the marginal distributions within the LH 
• The sample provides thematic information (fit prediction models) 
• The RS data provides the necessary spatial context (extrapolation to full spatial 

extend) 

Latin Hypercube sampling 

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional 
scale by constrained Latin Hypercube Samping of remote sensing data. International Journal of  
Applied Earth Observation and Geoinformation,  (21) 301-310.  doi:10.1016/j.jag.2012.07.004 
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Sampling 
Common practise RS-based sampling approach 

• Variability observed in RS data 
(PCA) 

• Subareas, distance to road, 
steepness of the landscape 

• Captured major soil variability in 
study area 

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional 
scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of  
Applied Earth Observation and Geoinformation,  (21) 301-310.  doi:10.1016/j.jag.2012.07.004 

• Expensive 
• Accessibility 
• Sampled variability 
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RETRIEVAL 
Which methods allow retrieval of mineralogy from mixtures using 
proximal sensing? 
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Measurements (I) 

Measurements of soil properties using spectroscopy 
• Soil mineralogy 
• Experiment 1: Classification of mineral classes  
• Experiment 2: Retrieval of individual mineral abundances 

Experiment 1: V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by 
VNIR spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia. 

Prepared samples for X-ray diffraction Prepared samples for spectroscopic measurements Source: Canadian Wildlife  federation 

Field Standard analysis          OR Spectral analysis 

Mineral maps? 
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Problem: inference of mineralogy  
1. Many minerals in a single sample 

2. Absorption features not distinct 
 

V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by VNIR 
spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia. 
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Experiment 1: Mineral Identification & Classification Algorithm (MICA)  
USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM) 

 

Results 

• Mineral categories 

•  Overall accuracy 52% 

 
Mineral Calcite-rich Calcite-poor 

Kaolinite 38 17 

Smectite 6 27 

Dioctahedral Mica 40 34 

V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by VNIR 
spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia. 



Department of Geography 

Spectral deconvolution coupled with 
regression tree analysis 

Method Results (natural samples) 

Width 

Intensity 

Asymmetry 

Saturation 

V.L. Mulder, M. Plotze, S. de Bruin, S., M.E. Schaepman, C. Mavris, R.  Kokaly, M. Egli, M., (2013). Quantifying 
mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1-2.4 µm) 
and regression tree analysis. Geoderma, (207) 279-290. DOI: 10.1016/j.geoderma.2013.05.011 
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MAPPING 
Can scale-dependent variability be extracted from remote sensing and 
do model predictions improve by using scaled remote sensing that match 
the variability of the sample? 

Why? 
• Remember: 100 samples  
• Represent major variability 

• Very low spatial correlation 
• RS data: high resolution – high variability 
• Result: few compatibility  in variability 
• Smoothing – the RS data represent similar  
      variability as the sampled soils 
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Methods 

• Fixed Rank Kriging (Cressie and Johannesson, 2008) 

– Handles large datasets 

– Interpolate gaps 

– Smoothing data based on medium and long-scale 
processes 

• Model soil mineralogy 
1. Mineral categories & mineral abundances 

2. Predictor variables from satellite data 

– Statistical relation between 1 & 2 

 

 
Cressie, N., Johannesson, G., 2008. Fixed rank kriging for very large 
spatial data sets. Journal of the Royal Statistical Society. Series B: 
Statistical Methodology 70(1), 209-226. 
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Characterizing regional soil mineralogy (II) 

V.L. Mulder, S. de Bruin, S., J. Weyermann, R. Kokaly, M.E. Schaepman, (2013). 
Characterizing regional soil mineral composition using spectroscopy and geostatistics. 
Remote Sensing of Environment (139),415-429. DOI: 10.1016/j.rse.2013.08.018 

Overall accuracy 76%  

Radj
2 = 0.71  

RMSEcal
 = 8.9 

RMSEval = 12 

Radj
2 =       0.70 

RMSEcal
 = 4.6 

RMSEval = 6 
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GENERAL CONCLUSION 

Spectroscopy-supported digital soil mapping is time and cost 
efficient for large-scale soil assessments  

 

Improvements in regional-scale DSM result from the integrated 
use of remote sensing with geostatistical methods 

  

OUTLOOK 
To deliver accurate and comprehensive information about soils, soil 
resources and ecosystem services provided by soils at regional and 
ultimately global scale 

 



Thank you all 

Essentially, all life depends upon the soil.  
There can be no life without soil and no soil without life;  
they have evolved together. 
American naturalist Charles Kellogg, 1938. 


