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digital soil mapping
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* Introduction

* Project and theoretical background

X _ * Field sampling

T Estimating and mapping soil mineralogy

e Conclusion & outlook
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The nation that destroys its soils
destroys itself

Frankling D. Roosevelt, Letter to all State Governors on a Uniform Soil Conservation Law (26 February, 1937)

BACKGROUND

In the epoch of the Anthropocene, human-driven changes affected the functioning of the
Earth System. Nowadays, we need to adapt to climate changes and assure food security for
the growing human population. Here, soil resources provide key ecosystem services and

they need to be mapped and monitored on regional and global scale.

Source: Sustainable Development Solutions Network, United Nations,

Solutions for sustainable agriculture and food systems, 2013.
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Acrisols
Cambisols
Rendzinas
Chernozems
Podzoluvisols
Ferralsols

Problems

I Gleysols

Il Phaeozems
Lithosols
[ Fluvisols
Bl Kastanozems
[ Luvisols

Il Greyzems
I Nitosols
[l Histosols
Podzols
[ Arenosols
[ Regosols

Missing data and too general information
Low accuracy
How to use soil classes for modelling environmental processes

I Solonetz
[ Andosols
Il Rankers
[T] Vertisols
[] Planosols
[ ] Xerosols

] Yermosols
[] Solonchaks
[] Water Bodies
[F£] Glaciers

Source: FAO Soil map of the World
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e-SOTER: enhanced Soil and Terrain
Database

* Regional soil and terrain mapping

* Web-based regional pilot platform

* Data, methodologies, and applications

* Using remote sensing to validate, augment and
extend existing data
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OBIJECTIVE

To exploit the use of remote (RS) and proximal sensing (PS)
methodologies for digital soil mapping (DSM) to facilitate
soil property mapping at regional scale.
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3.

4.

Digital soil mapping

The creation and population of spatial soil information by the use of field and
laboratory observation methods coupled with spatial and non-spatial soil

inference systems

(Carré et al., 2007)

Goal: Spatial patterns of soils across variou

Local soil observations
Field, laboratory and PS observations

Exhaustive datasets

s spatial and temporal scales

Spatially explicit maps, e.g. existing soil maps or RS data & product

Statistical methods
Regression models
Data mining
Geostatistics

F. Carré, A.B., McBratney, T. Mayr, L. Montanarella (2007). Digital soil
assessments: Beyond DSM. Geoderma, 142 (1-2), 69-79.
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Remote Sensing
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* RSis the science/ are the techniques of deriving information about the Earth’s
land and water areas from images at a distance

* It relies upon measurement of electro-magnetic (EM) energy reflected or emitted
from the objects of interest at the surface of the Earth
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Remote and proximal sensing
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Remote and proximal sensing
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Workflow digital soil mapping (DSM)

Geographical data Model specifications  Spatial prediction

Soil profile
measurements Statistical model Soil properties

X

Spatial relation

Source: Africa Soil Information Service,
http://www.africasoils.net/data/digital-soil-mapping
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Spectroscopy-supported digital soil mapping (l)

Traditional Spectroscopy

Data collection

Soil
measurements

Laboratory measurements: X-ray diffraction Laboratory measurements: Spectral measurements

V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr (2011). The use of remote sensing in soil and
terrain mapping — A review. Geoderma, 162- (1-2), 1-19. doi:10.1016/j.geoderm.2010.12.018
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What is the current state-of-art in the use of
remote sensing for soil and terrain mapping?

Use Proximal Sensing Remote sensing
-3  Estimating soil properties:

Quantitative
Qualitative

Characterizing the landscape
> Spatial interpolation

Associated spatial scale Point - Local Local - Global

V.L. Mulder, S. de Bruin, M.E. Schaepman, T.R. Mayr (2011). The use
of remote sensing in soil and terrain mapping — A review. Geoderma,
162- (1-2), 1-19. doi:10.1016/j.geoderm.2010.12.018
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Study area

Rif Mountains

20 40 Km

Anti-Atlas Mountains

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional
scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of
Applied Earth Observation and Geoinformation, (21) 301-310. doi:10.1016/j.jag.2012.07.004
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Source: Fieldwork campaign Maroc, 2010
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MAIN FINDINGS
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2 weeks in the field
* Few legacy data
e 150.000 km?2

SAM PLI N G * Time & financial limitations

Can major soil variability at regional scale be represented by a sparse
remote sensing-based sampling approach?

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional
scale by constrained Latin Hypercube Samping of remote sensing data. International Journal of
Applied Earth Observation and Geoinformation, (21) 301-310. doi:10.1016/j.jag.2012.07.004
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Soil-landscape paradigm (Jenny)

Soil formation = Climate, Organisms, Relief, Parent material & Time
(CLORPT)

Reflectance + elevation represents CLORPT

Latin Hypercube sampling

e Input: Satellite and elevation data as a variability measure of soils

* Constrained by subareas, distance to the roads and steepness of the landscape
* Cost function f(x)= areas + distance + topography + water

* 100 sites were optimised to optimally sample the Latin Hypercube (LH)
* Minimize cost while sampling the marginal distributions within the LH

* The sample provides thematic information (fit prediction models)

* The RS data provides the necessary spatial context (extrapolation to full spatial

extend)

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional
scale by constrained Latin Hypercube Samping of remote sensing data. International Journal of
Applied Earth Observation and Geoinformation, (21) 301-310. doi:10.1016/j.jag.2012.07.004
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Sampling

| |subareas 20 40 Km

* \Variability observed in RS data
(PCA)

e Subareas, distance to road,
steepness of the landscape

e Captured major soil variability in
study area

V.L. Mulder, S. de Bruin, M.E. Schaepman (2012). Representing major soil variability at regional
scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of
Applied Earth Observation and Geoinformation, (21) 301-310. doi:10.1016/j.jag.2012.07.004

m Sub-areas

* Expensive
* Accessibility
e Sampled variability
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RETRIEVAL

Which methods allow retrieval of mineralogy from mixtures using
proximal sensing?
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Measurements (l)

Field Standard analysis OR Spectral analysis

Source: Canadian Wildlife federation Prepared samples for X-ray diffraction Prepared samples for spectroscopic measurements

Measurements of soil properties using spectroscopy

* Soil mineralogy

* Experiment 1: Classification of mineral classes

* Experiment 2: Retrieval of individual mineral abundances

—  Mineral maps?

Experiment 1: V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by
VNIR spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia.
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Problem: inference of mineralogy
1. Many minerals in a single sample

2. Absorption features not distinct

V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by VNIR
spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia.




o R University of gWAGENINEEN UNIVERSITY

5 zurichm WAGENINGENNGEE

Department of Geography

Experiment 1: Mineral Identification & Classification Algorithm (MICA)
. USGS Processing Routines in IDL for Spectroscopic Measurements (PRISM)

Results
__ o4 * Mineral categories
* Overall accuracy 52%

— — Dolomite
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V.L. Mulder, S de Bruin, M.E. Schaepman, (2012). Retrieval of composite mineralogy by VNIR
spectroscopy, 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia.
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Spectral deconvolution coupled with
regression tree analysis

Method Results (natural samples)
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V.L. Mulder, M. Plotze, S. de Bruin, S., M.E. Schaepman, C. Mavris, R. Kokaly, M. Egli, M., (2013). Quantifying
mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1-2.4 um)
and regression tree analysis. Geoderma, (207) 279-290. DOI: 10.1016/j.geoderma.2013.05.011
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Why?
e Remember: 100 samples
e Represent major variability
e Very low spatial correlation
e RS data: high resolution — high variability
e Result: few compatibility in variability
* Smoothing —the RS data represent similar
variability as the sampled soils

MAPPING

Can scale-dependent variability be extracted from remote sensing and
do model predictions improve by using scaled remote sensing that match
the variability of the sample?
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[l Methods

Fixed Rank Krlglng (Cressie and Johannesson, 2008)
— Handles large datasets
— Interpolate gaps

— Smoothing data based on medium and long-scale
processes

* Model soil mineralogy
' 1. Mineral categories & mineral abundances

2. Predictor variables from satellite data
— Statistical relation between 1 & 2

Cressie, N., Johannesson, G., 2008. Fixed rank kriging for very large
spatial data sets. Journal of the Royal Statistical Society. Series B:
Statistical Methodology 70(1), 209-226.
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Characterizing regional soil mineralogy (Il)

Ru?= 070 Mica abundance (%) Calcite abundance (%) Ry?=0.71
RMSE,, = 4.6 5°E 45 4°E -35°E 5°E 45°E 4°E -35°E RMSE = 8.9
RMSE,, = 6 3 RS NP, = - RS, & SRR S S = I < RMSE,, = 12
i "q
34.7°N 34.7°N
34.3°N 34.3°N

al categories
4.5°E \ . -4°E -3.5°E

> i s =
[T Presence [ Presence Ca-ric [ Absence
Overall accuracy 76%

Mica

V.L. Mulder, S. de Bruin, S., J. Weyermann, R. Kokaly, M.E. Schaepman, (2013).
Characterizing regional soil mineral composition using spectroscopy and geostatistics.
Remote Sensing of Environment (139),415-429. DOI: 10.1016/j.rse.2013.08.018
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GENERAL CONCLUSION

= = Spectroscopy-supported digital soil mapping is time and cost

« Improvements in regional-scale DSM result from the integrated
use of remote sensing with geostatistical methods

OUTLOOK

To deliver accurate and comprehensive information about soils, soil

resources and ecosystem services provided by soils at regional and
ultimately global scale




Essentially, all life depends upon the soil.
There can be no life without soil and no soil without life;
they have evolved together.

American naturalist Charles Kellogg, 1938.

Thank you all




