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1. Executive Summary  

 

This deliverable reports on the validation and uncertainty propagation analysis of e-SOTER products 

by comparing the e-SOTER soil and landform maps with independent validation data and by 

analysing how errors in a Digital Elevation Model (DEM) propagate to the e-SOTER landform map. 

Landform validation was done by comparing the true landform in the Western European (WE) and 

Central European (CE) windows with the landform as depicted on the e-SOTER maps. The various 

simplification and generalization steps of the e-SOTER landform classification methodology cause 

discrepancies between the true and predicted landform. Validation showed that the accuracy of the 

e-SOTER landform maps is high for landform classes ‘elevation’, ‘relief intensity’ and ‘flatness’, with 

agreement between true and predicted class in 81-98% of cases. For landform class ‘slope’ the 

agreement is only around 50%, which means that in 1 out of 2 cases the e-SOTER map does not 

agree with reality. This is caused by the highly fragmented spatial pattern of the true slope map, a 

feature that cannot be reproduced in the e-SOTER map because it must generalize the map to the 

1:1000,000 million scale. Comparison of landform validation results between the WE and CE 

windows did not show large or meaningful differences. 

Soil validation was based on a comparison of the dominant soil classes on the e-SOTER maps with 

independent soil observations derived from existing legacy data. This first required a conversion of 

soil classes from the local classification system to the World Reference Base (WRB). For this purpose 

correlation tables were prepared. The validation results show that the e-SOTER soil map of the UK 

pilot area reproduced the large scale patterns and had an agreement with the ‘true’ soil class of 

51%. The e-SOTER map overrepresented Histosols and Podzols and lacked Leptosols as a dominant 

soil group. Validation results in the German / Czech pilot area revealed an overall agreement of only 

32%. The rather low purity in this case can be assigned to high variability of the soil cover and often 

low dominancy of the dominant soil unit in the SOTER units. Also, in this case the more detailed 

validation data allow the use of more strict validation criteria than in the UK case. Overall, the fairly 

low agreements between e-SOTER soil maps and validation data in both pilot areas show that the 

soil maps have large uncertainties, even at the coarse soil group level that was considered here. Part 

of the disagreement may be caused by errors in the validation data, but this is unlikely to be the 

major cause of the discrepancy. 

The uncertainty propagation analysis showed that DEM uncertainty mainly affects the e-SOTER slope 

class. The real elevation is more noisy than the smoothed DEM and this causes the DEM-derived 

slope to be too small. Elevation was hardly affected while flatness is only sensitive to DEM errors in 

relatively flat areas and relief intensity in areas with a more intense relief (i.e. the CE pilot area). 

Overall DEM uncertainty does not seriously impair landform accuracy and is mainly restricted to 

zones along class boundaries. It is a smaller source of uncertainty than the simplification and 

generalization steps that were analysed in the landform validation procedure.  
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Validation of the WP3 landform maps for the UK area of the Western European window in terms of 

predictability of the WRB reference soil groups indicated that the hillshed analysis gives the best 

overall results. Both the hillshed and the object-oriented approach give better results than the WP1 

map at subclass level, although differences in predictability and purity are modest. The entropy is 

equal for all three landform maps, indicating that the WP3 landform units are not internally more 

homogeneous with respect  to soil distribution than the WP1 units.  
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2. Introduction 

 

The e-SOTER project used much of its resources to automate and improve the SOTER methodology 

such that it yields reproducible results that utilise new sources of (remote sensing) information that 

have recently become available. The new methodology and results for pilot areas and windows have 

been described in great detail in project deliverables D3, D5 and D8. However, the new methodology 

and resulting products only have merit when these are sufficiently accurate for the intended use. It 

is therefore important to validate the resulting maps and analyse how errors in the inputs to the 

e-SOTER algorithms propagate to the output. This deliverable tackles these issues by confronting the 

e-SOTER maps of landform and soil with independent validation data and by analysing how errors in 

the Digital Elevation Model (DEM) propagate through e-SOTER landform classification algorithms. 

The term ‘validation’ is defined here as “the process of determining the degree to which a product is 

an accurate representation of the real world”. Thus landform validation requires a comparison of 

‘true’ landform with landform produced with the e-SOTER methodology, and likewise soil validation 

makes a comparison of ‘true’ soil classes with soil classes predicted by the e-SOTER methodology. In 

order to derive the true landform it is first necessary to define it. In the e-SOTER project the 

landform at some location is completely determined by the altitude at the location and its 

surroundings. This implies that landform validation data can be obtained from a detailed and 

accurate DEM of the area of interest. Discrepancies between true landform and ‘e-SOTER landform’ 

are then caused by the various simplification and generalization steps of the e-SOTER methodology. 

For soil it is different, because in this case the validation data have to be obtained from independent 

observations in the field. This can be done by collecting new soil data but a more efficient way is to 

use existing legacy soil data that have not been used by the e-SOTER methods. Since landform and 

soil class are variables that are measured on a categorical scale, validation measures must be based 

on the entries of contingency tables that tabulate the various combinations of true and predicted 

classes observed at validation sites. In short, the e-SOTER product will be an accurate representation 

of the real world when the predicted class at validation locations often agrees with the observed 

class, but there are also additional, more specific measures of accuracy that can be derived from 

contingency tables. 

When validation shows that the e-SOTER product fails to accurately describe the real world it may be 

interesting to analyse what are the main causes of the discrepancy. This is particularly useful when 

one needs to take rational decisions on how to improve the product. Attention should be focused on 

the weakest link in the chain of actions, i.e. improving those inputs or processing steps that are the 

main source of uncertainty in the end product. This is where uncertainty propagation analysis 

becomes useful. Using a stochastic simulation approach, this method allows to trace the propagation 

of individual sources of uncertainty and to calculate the relative contribution of each uncertainty 

source. In this deliverable the uncertainty propagation analysis is limited to an analysis of DEM 

uncertainty propagation to the e-SOTER landform map. The analysis provides valuable information 

on whether improvement of the quality of the DEM may lead to a substantial increase of the 

accuracy of the e-SOTER landform map. 
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This deliverable presents the theory of validation and uncertainty propagation analyses and applies 

these to validation and uncertainty propagation analysis of the e-SOTER landform and soil maps of 

the Western European and Central European windows. The deliverable first addresses landform 

validation (Chapter 3), next soil validation (Chapter 4), DEM uncertainty propagation (Chapter 5) and 

finally validation of the work package 3 landform maps (Chapter 6).  
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3. Landform Validation 

 

3.1  Methodology 

 

3.1.1 Introduction 

Landform validation focuses on analysing how the various aggregation and generalization steps in 

the e-SOTER procedure affect the output: the Physiographic Unit (PU) map. The PUs are defined by 

four landform attributes (LFAs): elevation, slope, relief intensity and flatness index.  

It is useful to provide a short summary of the e-SOTER procedure to clarify the chosen validation 

approach. More details are given in deliverables D3 and D5. First, the LFAs are derived from the 90-

m SRTM DEM and classified into n classes (slope 7 classes, elevation 9, relief intensity 4 and flatness 

2). Class definitions are given in Dobos et al. (2005). Next the most frequently occurring attribute 

class within a 990×990 m2 block is calculated for each pixel in the 90-m raster map. The LFA maps 

are resampled to 990-m resolution and again the most frequently occurring attribute class within a 

six cell radius is calculated for each pixel in the 990-m map. Finally the elevation, slope and relief 

intensity maps are combined into one map. Each unique combination of the three LFAs defines a PU. 

One last generalization step eliminates the PU units smaller than a given threshold. The fourth LFA 

map, the flatness index, is ‘burned’ into the PU map. 

The above shows that construction of the final PU map involves several steps of generalizing and 

aggregating the LFA maps and the PU map, loosing detail and introducing generalization errors in 

each step. These steps are needed for cartographic principles (e.g. minimum size of mapping unit) 

but do impair the quality of the final product. Landform validation assesses how well the mapped 

LFA classes characterize the PUs after all aggregation and generalization steps have been done, by 

comparing the 90-m classified LFA maps (which are considered to be the ground truth) with the 

content of the PUs. 

Landform validation was done for the Western and Central European windows. The validated PU 

map was obtained with version 6 of the e-SOTER procedure (dated 28 April 2011). 

 

3.1.2 Estimation of map quality measures  

The elevation, slope and relief intensity attributes are measured on an ordinal scale. This means that 

these are categorical data (classes) with a logical ordering to the classes. The flatness index is a 

binary (0/1) variable where 1 indicates a flat area and 0 a non-flat area. This difference between 

attribute scales has to be taken into account for validation. For example, mapping a location as slope 

class 2 when in reality it is slope class 3 can be considered ‘less wrong’ than when the real slope class 

would have been 6. 

The classified 90-m LFA rasters and the PU polygon maps were sampled by randomly selecting point 

locations with an overall density of 1 point per km2 (yielding a very large sample of 184,000point 
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locations). At these points the ‘true’ LFAs were compared with the LFAs of the PUs. From this 

comparison several quality measures were computed. We distinguish single quality measures, 

calculated for individual LFAs, and composite quality measures, calculated for a combination of LFAs. 

The quality measures are based on Stehman (1997) and Brus et al. (2011),  who provide a thorough 

methodology for statistical validation of digital (soil) maps. 

Single quality measures include the overall purity, LFA class purity and LFA class representation. 

These three quality measures can be easily estimated from a sample error matrix (or confusion 

table, Table 3.1) (Foody, 2002; Stehman, 1997). These measures, however, do not take into account 

the ordinality of the LFA classes. The entries of the error matrix are the number of observations for 

each combination of mapped and true LFA classes. The row marginals, nu+,  are the number of 

locations mapped as LFA class u, u=1,2,…U. The column marginals, n+u, are the number of locations 

with true LFA class u. Dividing a matrix entry by a row or column total or the total number of 

locations gives a proportion. 

 

Table 3.1. Error matrix of mapped against true LFA class. 

Mapped LFA 
class (990 m) 

True LFA class (90 m) Σ 

 1 2 … U  
1 n11

a 
n12 … n1U n1+ 

2 n21 n22 … n2U n2+ 
. . . … . . 
. . . … . . 
. . . … . . 
U nU1 nU2 … nUU nU+ 

Σ n+1 n+2 … n+U N 
                                          a

 nij = the number of validation locations mapped as LFA class ci with true LFA class cj. 

 

Overall purity is defined as the proportion of the total observations (i.e., the mapped area) in which 

the mapped LFA class equals the true LFA class. In other words, it is the areal proportion of the LFA 

map correctly classified: 

  ∑
   

 
                                                                                 

 

   

 

where U denotes the number of LFA classes, nuu denotes the number of correctly classified validation 

locations in class u and N denotes the total number of validation locations. 

The purity can also be defined at the level of the LFA classes (the map unit purity), leading to the 

proportion of the area of an LFA class correctly classified: 

   
   

   
                                                                                    

where nu+ denotes the number of locations mapped as LFA class u. The complement of pu, 1-pu, is 

referred to as the error of commission for class u. It is the proportion of the area incorrectly mapped 

as class u. 
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The LFA class representation for class u is the proportion of the area where in reality LFA class u 

occurs that is also mapped as class u: 

   
   

   
                                                                                     

where n+u denotes the number of locations mapped as class u; ru is also referred to as the sensitivity, 

and its complement, 1-ru, is referred to as the error of omission, i.e. the  proportion of the area with 

true LFA class u not mapped as class u. 

When taking the ordinality of the slope, elevation and relief intensity attributes into account, less 

strict purity measures can be calculated for these attributes. For these measures we not only 

considered the diagonal entries of the error matrix as correctly classified locations but also the 

‘one off’-diagonal entries. The overall purity of an LFA is then defined as the areal proportion of the 

mapped area in which the mapped LFA class equals the true LFA or one class higher or lower than 

the true class. Less strict purity measures were not estimated for the flatness index (because this has 

only two classes). 

Another quality measure that can be used for ordinal data is the Spearman’s rank correlation 

coefficient or Spearman’s rho (Liu et al., 2007). This statistic measures the statistical dependence 

between pairs of observations (the mapped and true LFAs) after converting the data to ranks. 

Spearman’s rho is computed as: 

  
  

 ∑   
  

 

       
 

 
 

            

√                 
                                                        

in which T* is defined as: 

   
∑      

     

       
                                                                             

where Di is the difference between the ranks of the mapped and true LFA class for the i-th validation 

observation. N is the number of validation observations, as before, and tk is the number of validation 

observations with tied rank. The ranks are calculated as follows. First, the validation locations are 

arranged by mapped LFA class in ascending order. The rank assigned to each class equals the 

average of the positions of the locations in the ascending order of the classes. For example, suppose 

that mapped slope class is 1 at 10 validation locations, then the rank of each of these locations is 5.5 

([1+2+…+10]/10). If mapped slope class is 2 at 20 locations, then the rank of each of these locations 

is 20.5 ([11+12+…+30]/20) because these locations take up positions 11 to 30, when all locations are 

arranged in ascending order according to slope class. In this way the rank is computed for each 

mapped LFA class. This is repeated for the true LFA class so that in the end each validation  location 

is assigned two ranks: one based on mapped LFA and one on true LFA. The difference between these 

two ranks at validation location i is Di in Eq. 4 above. Spearman’s rho was computed for the slope, 

elevation and relief intensity attributes. 

Finally we defined the composite purity to indicate how well the combination of four mapped LFA 

classes characterize the PU. The composite purity is the proportion of the mapped area where k LFAs 
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are correctly mapped (k = 1, 2, 3 or 4). To calculate the composite purity an indicator variable is 

created for each LFA that equals 1 if the mapped LFA class equals the true LFA class and 0 otherwise. 

Next the locations are counted for which the sum of the four indicators equals k and this sum is 

divided by the total number of validation locations N. 

 

3.2  Application to Western European window 

Figure 3.1 shows maps of the four LFAs derived from the PU map at 990-m resolution. In addition, 

four LFA maps with 90-m resolution were obtained with the same version of the e-SOTER procedure. 

Both maps were sampled at 184,000 randomly selected locations (one validation location per km2). 

Tables 3.2 to 3.5 show the error matrices of the four LFAs. The overall purity, the less-strict overall 

purity based on the diagonal and one off-diagonal elements of the error matrices and the 

Spearman’s rank correlation coefficient are listed in Table 3.6, while the map unit purities and class 

representations are shown in Table 3.7.  

The LFA most affected by the generalization steps in the e-SOTER procedure is slope. Overall purity 

of the slope map is 45% and Spearman’s rank correlation is 38%. The error matrix shows that slope 

class 1 as derived from the 90-m SRTM DEM covers 48% of the window. After generalization this is 

21% (resulting in a class representation of 32%), whereas the areal proportion of slope class 2 

increases from 33% to almost 70% after generalization. This is because large areas with slope class 1 

and 3 are incorporated in class 2. This results in a map unit purity of class 2 of only 37%. Slope 

classes 4 to 7 covered less than 5% of the 90-m slope map. After generalization slope classes 5 to 7 

have disappeared. The large effect of the generalization procedure on slope is also evident in 

Figure 3.2 which shows details (45x63 km) of the four LFA maps before and after generalization. The 

fact that slope is most affected by generalization can be explained by the fragmented appearance of 

the slope classes on the 90-m map. Slope classes mainly occur in small ‘islands’. When such map is 

generalized it induces more errors in the PU map — in which map delineations have a minimum size 

of 25 km2 (Dobos et al., 2005) — than a 90-m LFA map with spatially more contiguous classes.  

Elevation is the least affected LFA. Areal proportions on the PU map are very close to those on the 

90-m map (Table 3.2). Elevation regions are relatively large, contiguous areas that are therefore little 

affected by generalization (see for example the detail in Figure 3.2). Map unit purities as well as class 

representations are roughly between 70 and 90%. Spearman’s rank correlation is 0.91. 

Overall purity of LFA Relief intensity (RI) is 92% (Table 3.6). This large purity is mainly attributed to 

the 94% purity of RI class 1 (which covers 91% of the area on the 90-m map and 95% on the PU 

map). The purity of class 2 is 58% and that of class 3 is 45%. Like the slope classes, RI classes 2 and 3 

are occur in many small islands at 90-m resolution (Figure 3.1) that are typically not large enough to 

be retained in the PU map. This explains the small class representations of these two classes (28% 

and 4%, respectively) and the modest correlation coefficient of 0.43. 
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Figure 3.1. Landform attribute maps derived from the e-SOTER Physiographic Units. The rectangle indicates 
the area from which the map details maps were obtained. 
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Figure 3.2. Details of the four LFA maps with 90-m resolution (left) as derived from the SRTM DEM and with 
990-m resolution (right) after the generalization steps in the e-SOTER procedure. 
  



Report Deliverable No D10  e-SOTER 

 

14 

 

Table 3.2. Error matrix of LFA ‘Elevation’. 
Mapped class 
(990 m) 

‘Observed’ class (90 m) Total % 

 
1 2 3 4 5 6 7   

1 9,320 1,259 43 1 0 0 0 10,623 5.8 

2 3,679 25,832 4,505 204 2 0 0 34,222 18.6 

3 192 5,373 38,854 6,143 37 0 0 50,599 27.5 

4 98 458 7,444 62,487 2,837 9 0 73,333 39.8 

5 0 0 4 1,224 8,398 603 0 10,229 5.6 

6 0 0 0 0 387 4,250 119 4,756 2.6 

7 0 0 0 0 0 28 210 238 0.1 

Total  13,289 32,922 50,850 70,059 11,661 4,890 329 184,000  

% 7.2 17.9 27.6 38.1 6.3 2.7 0.2  100 
 

Table 3.3. Error matrix of LFA ‘Relief intensity’. 

Mapped  
class (990 m) 

‘Observed’ class (90 m) Total % 

 
1 2 3   

1 164,954 10,960 464 176,378 94.8 

2 2,413 4,346 742 7,501 4.1 

3 6 61 54 121 0.1 

Total 167,373 15,367 1,260 184,000  

% 90.9 8.4 0.7  100 
 

Table 3.4. Error matrix of LFA ‘Slope’. 

Mapped  
class (990 m) 

‘Observed’ class (90 m) Total % 

 
1 2 3 4 5 6 7   

1 28,252 8,236 1,451 124 39 0 0 38,102 20.7 

2 58,643 47,256 17,775 3,028 1,187 44 5 127,938 69.5 

3 2,106 5,236 6,395 2,336 1,326 75 2 17,476 9.5 

4 16 68 149 117 122 12 0 484 0.3 

5 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 

Total 89,017 60,796 25,770 5,605 2,674 131 7 184,000  

% 48.4 33.0 14.0 3.0 1.5 0.07 0.004  100 
 

Table 3.5. Error matrix of LFA ‘Flatness’. 

Mapped  
class (990 m) 

‘Observed’ class (90 m) Total % 

 
0 1   

0 178,966 2,854 181,820 98.8 

1 250 1,930 2,180 1.2 

Total 179,216 4,784 184,000  

% 97.4 2.6  100 
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Table 3.6. Overall purities (%) and Spearman’s rank correlation coefficient of the LFAs. 

Landform attribute Western European window Central European window 

 Overall purity Spearman’s rho Overall purity Spearman’s rho 

Elevation 81.1 / 99.4
a
 0.91 87.8 / 99.8 0.96 

Relief intensity 92.0 / 99.7 0.43 81.1 / 98.5 0.86 

Slope 44.6 / 94.8 0.38 50.6 / 86.6 0.81 

Flatness 98.3 / - - 98.1 / - - 
 a

 Overall purity / Overall purity based on one off-diagonal entries of the error matrix. 

 

Table 3.7. Map unit purities (%) and class representations (%) of the LFA classes. 

LFA class Western European window Central European window 

 Map unit purity Class representation Map unit purity Class representation 

Elevation     

1 87.7 70.1 - - 

2 75.5 78.5 80.8 32.2 

3 76.8 76.4 95.3 94.3 

4 85.2 89.2 91.8 93.0 

5 82.1 72.0 83.2 80.2 

6 89.4 86.9 87.6 89.3 

7 88.2 63.8 84.4 84.8 

8 - - 83.4 81.6 

9 - - - 0 

     
Relief intensity     

1 93.5 98.6 91.3 91.5 

2 57.9 28.3 57.7 53.4 

3 44.6 4.3 71.4 71.5 

4 - - 73.1 83.9 

     
Slope     

1 74.1 31.7 81.0 68.9 

2 36.9 77.7 35.6 36.1 

3 36.6 24.8 34.7 48.3 

4 24.2 2.1 25.5 14.3 

5 - 0 41.0 52.4 

6 - 0 30.1 28.7 

7 - 0 56.4 56.5 

     
Flatness     

0 98.4 99.9 98.2 99.9 

1 88.5 40.3 87.0 26.5 
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Table 3.8. The composite purity (%) based on the number of LFAs correctly mapped at each validation location. 

LFAs correctly mapped Western European window Central European window 

 Purity Cumulative Purity Cumulative 

4 34.7 34.7 41.2 41.2 

3 49.3 84.0 38.8 80.0 

2 13.5 97.5 16.7 96.7 

1 2.5 100 3.3 100 

0 0 100 0 100 

 

Overall purity of the flatness attribute is 98%. However, one should take care with the interpretation 

of this (large) value. If the entire window would have been mapped as flatness class 0 (i.e. non-flat), 

then the purity would have been 97.4%. It is therefore better to focus on how well the PU map 

represents the flat areas. Class representation of the flat areas is a moderate 40%, meaning that 40% 

of the area of the WE window that was classified as ‘flat’ on basis of the analysis of the 90-m SRTM 

DEM is classified as ‘flat’ on the PU map. Only the relatively large flat areas, such as for example in 

the north-central part of the UK area, are depicted on the PU map (Figures 3.1 and 3.2). The majority 

of the flat areas form small ‘islands’ in the non-flat area and are lost in the generalization procedure. 

Validation based on the diagonal plus one off-diagonal entries of the error matrices shows that at 95 

to 100% of the validation locations the mapped LFA class is not more than 1 class off the ‘true’ LFA 

class, that is the LFA class according to the 90-m raster. Finally, Table 3.8 presents the composite 

purity. From this table it can be observed that for 35% of the window the four LFA classes mapped at 

990-m resolution equal the LFA classes according to the 90-m maps and that for 84% of the window 

at least three of the mapped LFA classes correspond to the classes according to the 90-m maps. 

 

3.3  Application to CE window 

Figure 3.3 shows maps of the four LFAs for the Central European (CE) window as derived from the 

PU map. With the same version the four LFA maps with 90-m resolution were obtained. Both maps 

were sampled at 685,000 randomly selected locations (one validation location per km2). Tables 3.9 

to 3.12 show the error matrices of the four LFAs. The overall purity, the less-strict overall purity 

based on the diagonal and one off-diagonal elements of the error matrices and the Spearman’s rank 

correlation coefficient are listed in Table 3.6, while the map unit purities and class representations 

are shown in Table 3.7.  

Validation results for the CE window are comparable to those of the WE window. The overall purities 

for LFAs elevation and slope are somewhat larger than those of the WE window, whereas the overall 

purity of RI is somewhat smaller. Also in the CE window, slope has the smallest purity of the four 

LFAs for reasons explained in previous sections. A detail of the 90-m slope map (Figure 3.4) clearly 

shows the fragmented occurrence of the slope classes. 
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Figure 3.3. Landform attribute maps derived from the e-SOTER Physiographic Units. The rectangle indicates 
the area from which the map details were obtained. 
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Figure 3.4. Details of the four LFA maps with 90-m resolution (left) as derived from the SRTM DEM and with 
990-m resolution (right) after the generalization steps in the e-SOTER procedure. 
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Table 3.9. Error matrix of LFA ‘Elevation’. 

Mapped class 
(990 m) 

‘Observed’ class (90 m) Total % 

 
2 3 4 5 6 7 8 9   

2 101 24 0 0 0 0 0 0 125 0.02 

3 196 48,573 2,201 10 5 0 0 0 50,985 7.4 

4 13 2,890 157,300 10,708 344 5 0 0 171,260 25.0 

5 0 3 9,111 96,274 10,265 12 0 0 115,665 16.9 

6 0 3 532 12,817 180,756 12,339 0 0 206,447 30.1 

7 4 2 66 267 11,145 93,173 5,685 0 110,342 16.1 

8 0 0 0 0 1 4,400 25,171 604 30,176 4.4 

9 0 0 0 0 0 0 0 0 0 0.0 

Total  314 51,495 169,210 120,076 202,516 109,929 30,856 604 685,000  

% 0.05 7.5 24.7 17.5 29.6 16.0 4.5 0.1  100 

 

Table 3.10. Error matrix of LFA ‘Relief intensity’. 

Mapped  
class (990 m) 

‘Observed’ class (90 m) Total % 

 
1 2 3 4   

1 367,863 31,102 3,884 41 402,890 58.8 

2 28,204 60,667 16,146 74 105,091 15.3 

3 5,031 21,090 85,265 7,994 119,380 17.4 

4 726 816 13,962 42,135 57,639 8.4 

Total 401,824 113,675 119,257 50,244 685,000  

% 58.7 16.6 17.4 7.3  100 
 

Table 3.11. Error matrix of LFA ‘Slope’. 

Mapped class 
(990 m) 

‘Observed’ class (90 m) Total % 

 
1 2 3 4 5 6 7   

1 171,631 31,715 6,421 1,342 760 74 10 211,953 30.9 

2 54,450 46,042 21,944 4,593 2,090 151 31 129,301 18.9 

3 17,480 39,270 49,142 22,017 12,573 876 98 141,456 20.7 

4 1,834 3,705 8,508 7,869 8,096 761 111 30,884 4.5 

5 2,692 5,616 13,624 16,550 40,327 15,341 4,233 98,383 14.4 

6 778 811 1,309 1,646 7,677 10,458 12,118 34,797 5.1 

7 283 372 757 1,115 5,402 8,740 21,557 38,226 5.6 

Total 249,148 127,531 101,705 55,132 76,925 36,401 38,158 685,000  

% 36.4 18.6 14.8 8.0 11.2 5.3 5.6  100 

 

Table 3.12. Error matrix of LFA ‘Flatness’. 

Mapped  
class (990 m) 

‘Observed’ class (90 m) Total % 

 
0 1   

0 667,950 12,046 679,996 99.3 

1 651 4,353 5004 0.7 

Total 668,601 16,399 685,000  

% 97.6 2.4  100 
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Elevation has the largest overall purity (88%). Like for WE, the areal proportions of the PU map are 

very close to those of the 90-m map (Table 3.9). Map unit purities and class representations vary 

between 80 and 95% (Table 3.7), except for the representation of class 2 (32%). However this class 

only covers 0.05% (or 340 km2) of the 90-m map. Like for WE, the elevation classes form relatively 

large, contiguous regions at 90-m resolution (Figure 3.3) which reduces the effect of the 

generalization steps on the outcome classes. 

The overall purity of the RI attribute is 81% with map unit purities ranging from 58 to 91%. Class 

representation varies between 53 and 92%. The areal proportion of the RI classes on the PU map are 

close to those on the 90-m map (Table 3.8). The Spearman’s rank correlation coefficient is 0.86. 

These results are in sharp contrast with the results for the WE window. An explanation for the 

difference in the effect of the generalization steps on the final PU map for the RI attribute between 

the two windows is again the nature of spatial variation of the RI at 90-m resolution. In the WE 

window the RI classes occur fragmented in relatively small islands, whereas in the CE window the RI 

classes form large, contiguous areas (Figure 3.4). Generalization of the RI classes therefore induces 

fewer errors in the PU map in the CE window than in the WE window. 

The flatness attribute has an overall purity of 91%. However, more relevant is the representation of 

the ‘flat’ class, which is only 26%. A large part of the area classified as ‘flat’ at 90-m resolution is lost 

during the generalization steps. Representation of the ‘flat’ class in the CE window is much smaller 

than in the WE window (Table 3.7). The CE window has more pronounced relief than the WE window 

(compare Figure 3.1 with Figure 3.3). In areas with pronounced relief, flat areas are likely to be 

smaller than in areas with less pronounced relief. (Note, however, that the fraction of flat areas is 

almost the same for the two windows; 2.4% for CE and 2.6% for WE). Smaller flat areas are more 

affected by the generalization procedure than larger areas and are thus more likely to be lost on the 

final PU map (see for example Figure 3.4). 

Validation based on the diagonal plus one off-diagonal entries of the error matrices shows similar 

results as for the WE window. Between 87 and 100% of the validation locations the mapped LFA 

class is not more than one class off the ‘true’ LFA class. Finally, Table 3.8 presents the composite 

purity which is also comparable to that of the WE window. From this table it can be observed that 

for 41% of the window the four LFA classes mapped at 990-m resolution equal the LFA classes 

according to the 90-m maps and that for 80% of the window at least three of the mapped LFA 

classes correspond to the classes according to the 90-m maps. 
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4. Soil Validation 

 

4.1  Methodology 

 

4.1.1 Introduction 

Validation means putting a product to the test. In this case the product is the soil component of the 

e-SOTER terrain units. The mapped soil component is compared with field data, which are assumed 

to have negligible error compared to errors contained in the map. From this comparison various map 

quality measures can be calculated. Preferably, validation is done with field data obtained by 

probability sampling (Brus et al., 2011). The advantage of using such data for validation is that 

unbiased estimates of the map quality measures and their standard errors can be obtained. The 

standard errors quantify the uncertainty associated to the quality measures. This uncertainty arises 

from the fact that the quality measures are estimated from a limited dataset. 

Validation of the soil component of the terrain units is done for the UK part of the western European 

window and the German/Czech Republic part of the central European window. Unfortunately 

validation data collected by probability sampling were not available for these areas and there were 

insufficient resources to collect such data. Independent legacy soil data were therefore used for 

validation. Independent means that the data were not used by WP2 to define the soil components. It 

should be noted, however, that the validation data in both windows were obtained by purposive 

sampling instead of probability sampling. This has consequences when one wants to estimate map 

quality measures as we will explain below. The advantage of using legacy data is that these were 

abundantly available and hence a large sample of validation observations was available for both 

areas.  

The validation data consisted of described and classified soil profiles at geo-referenced point 

locations. The soils were classified according to local (British, German and Czech) classification 

systems. Before these data could be used for validation, the local soil classification systems had to 

be correlated to the WRB soil classification system so that the observed soil types could be 

reclassified to Reference Soil Groups (RSGs), including the key qualifiers. Once soil correlation and 

reclassification were completed, the observed RSGs were compared to the mapped soil groups of 

the soil components of the terrain units.  

Because the validation data were collected by purposive sampling, spatial dependence between the 

data points should be taken into account when estimating map quality measures from these data. 

This can be done by assuming a model for the spatial variation of the error (the difference between 

mapped soil attribute and observed soil attribute) and using this model when estimating the quality 

measures. While this is relatively easy when the variable of interest is continuous (e.g. a soil 

property such as organic matter content or the available water capacity), it is much more difficult for 

categorical variables such as soil group. For this reason we treated  the validation observations as 

spatially independent (i.e. as if collected by probability sampling), which allowed us to use 
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straightforward (design-based) estimation methods for map quality measures (Brus et al., 2011). We 

refrained however from estimating the standard errors of the quality measures because these 

cannot be properly estimated from data obtained by purposive sampling methods. 

 

4.1.2 Soil data to be validated  

The e-SOTER soil database dated 20 June 2011 was validated. This database distinguishes seventeen 

WRB soil groups or combinations of groups. These are: 

 Arenosol (AR) 

 Calcisol (CA) 

 Cambisol (CM) 

 Chernozem/Kastanozem (CK) 

 Histosols (HS) 

 Hydromorphic soils (Gleysol/Fluvisol/Stagnosol) (HY) 

 Leptosol/Regosol (LR) 

 Lixisols (LX) 

 Luvisol (LV) 

 Luvisols/Alisols (LA) 

 Nudilithic soils (ND) 

 Phaeozem (PH) 

 Podzol (PZ) 

 Regosol (RG) 

 Salt-affected soils (Solonetz/Solonchak) (SA) 

 Umbrisol (UB) 

 Vertisol (VT) 

The soil component of an e-SOTER terrain unit is made up of one or more (up to twelve) soil groups. 

For each soil group in a soil component the proportion of the terrain unit that this soil group covers 

is given. There is no information on where the individual groups are found within the terrain unit.  

The validation soil groups should follow the same legend as soil groups that comprise the soil 

components. This means that after correlation and reclassification of the validation soil data, some 

of the soil groups must be grouped into one composite group (e.g. Chernozems and Kastanozems). 

Validation of the soil components is done in two modes:  

1. The stringent mode. Correct prediction of the soil component only when the validation soil 

group equals the dominant soil group in the soil component. The dominant group is the 

group with the largest terrain unit proportion and is typically used for interpretation of the 

e-SOTER map for environmental applications (e.g. for the assessment of soil threats by 

WP5). 

2. The flexible mode. Correct prediction of the soil component when the validation soil group 

equals any of the soil groups in the component. 
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WRB qualifiers of the soil components were not validated because at the time of validation (June 

2011) the qualifier database was not yet finalized and spatially referenced, i.e. the qualifiers were 

not linked to the terrain unit map. 

The overall purity is a very strict accuracy measure in which all errors are treated equally. This means 

that confusion between, for example, Gleysol and Chernozem is ‘as wrong’ as confusion between 

Chernozem and Phaeozem although Gleysols and Chernozems are taxonomically farther apart than 

Chernozems and Phaeozems. For the soil map user confusion between Chernozem and Phaeozem 

might be less severe than confusion between Chernozem and Gleysol  (of course this depends on the 

application of the soil map). Validation was therefore also done for grouped RSGs (i.e. a generalized 

legend). The grouping is based on presence of key diagnostic horizons or properties. The generalized 

legend has twelve entries: 

 Arenosol (AR) 

 Argic soils (Luvisol/Alisol/Lixisol) (AG) 

 Calcisol (CA) 

 Cambisol (CM) 

 Dark soils (Chernozem, Kastanozem, Phaeozem) (DK) 

 Histosols (HS) 

 Hydromorphic soils (Gleysol/Fluvisol/Stagnosol) (HY) 

 Shallow soils (Leptosol/Regosol/Nudilithic) (SH) 

 Umbrisols (UB) 

 Podzol (PZ) 

 Salt-affected soils (Solonetz/Solonchak) (SA) 

 Vertisol (VT) 

Note that for each soil component in the e-SOTER soil database the percentage coverage of the 

associated SOTER unit is recalculated after generalizing the legend. The dominant soil group in the 

SOTER unit is then derived from these. 

 

4.1.3 Estimation of map quality measures  

For the stringent mode three map quality measures for the soil components were estimated from 

the validation data: overall purity, map unit purity (user's accuracy) and group representation 

(producer's accuracy) (Stehman, 1997; Brus et al., 2011). Like for landform validation, these 

measures are estimated from a sample error matrix (Table 3.1) by Equations. 3.1, 3.2 and 3.3. The 

entries of the error matrix are the number of observations for each combination of mapped and true 

(observed) soil group. For the flexible mode only the overall purity was estimated from the 

validation data. 

It should be noted that the three quality measures are global measures. This means that these give 

quality estimates for the map as a whole. They do not provide local information on accuracy, i.e. 

where predictions are correct and where they are wrong. 
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4.2  Application to UK part of the Western European window  

 

4.2.1 Soil data 

The e-SOTER soil database of the UK part of the Western European window was validated with the 

National Soil Inventory (NSI) data, which is a set of point data collected around 1980 on a regular 

grid with a 5-km spacing between the grid nodes. A total of 2,354 NSI sampling locations are located 

in the UK area. Locations in the sea (38) or in the major urban centres (131) were discarded as these 

lacked a profile description and classification. In addition, nine sampling locations fell outside the 

extent of the e-SOTER map and were discarded as well. This left 2,176 data points that make up the 

validation dataset. A site description is available for each sampling location and includes 18 site 

properties, among them are soil subgroup and soil series name according to the Soil Survey of 

England and Wales (SSEW) classification scheme. Profile descriptions include 24 soil properties 

(Appendix 1). 

In addition, the NSI topsoil dataset was available that contains information on 35 soil properties 

(Appendix 1) — including pH and soil organic carbon (SOC) — for 2,138 data points. Fifty profile 

lacked SOC data and 73 profiles pH data. For each of these profiles the average SOC and pH values of 

the soil subgroup that the profile belongs to were used as estimates. 

To construct the e-SOTER soil map the polygon map with the e-SOTER units obtained with Version 6 

(28 April 2011) of the e-SOTER procedure was used. The e-SOTER units are linked to the soil 

database by a common identifier. 

 

4.2.2 Soil correlation 

The validation datasets did not contain full profile descriptions and horizon analytical data (such as 

those used to populate the WP2 Representative profile database), thus a comprehensive 

classification to WRB reference soil groups and qualifiers was not possible. However, detailed 

correlation was not required as the mapped product contains information only on the RSG, which is 

sufficient detail for the scale of the e-SOTER product at 1:1M. WRB diagnostic horizons, features and 

properties used to determine the RSG can be complex and require detailed soil information. Thus a 

pragmatic approach is necessary to correlate the SSEW classification to the WRB to ensure that the 

primary WRB criteria are met but absence of some data does not limit the ability to correlate. The 

simplified criteria for WRB diagnostics derived in WP2 (Annex II, Annex III Deliverable D5) were used 

to aid this process. The resulting conceptual approach for correlation used a combination of direct 

correlation using criteria inherent in the SSEW classification scheme, classifier rules that require 

numerical data thresholds and expert judgment. The statistical software package R (R Development 

Core Team, 2008) was used to write scripts to assign hard-wired correlations in the case of direct 

correlations from the definitions and classifier rules where numerical or class requirements were 

needed.  
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An example of classifier rules based on numerical data (with some pragmatic decisions and expert 

judgement to deal with missing data) are those used to determine the WRB qualifiers ‘Mollic’ and 

‘Umbric’. These qualifiers were determined based on colour, pH (as a proxy for base saturation (BS), 

which was not included in the horizon analytical data) and organic carbon (OC), and topsoil thickness 

data. First value and chroma were extracted from the colour coding and the average value and 

chroma for the 0-20-cm soil layer was computed. Next for each profile the colour (value and chroma 

<3.5) and thickness (topsoil >10 cm) requirements were evaluated. The OC content (0.6-20 %) and 

pH (where it was assumed that a pH >6.5 correlates to a BS >50% and pH <6.5 to a BS <50%) 

requirements were evaluated. Soil layers that met the colour, thickness and OC requirement and 

with pH <6.5 were classified as ‘Umbric’. Those with pH >6.5 as ‘Mollic’. Soil layers that lacked colour 

information but with an OC content between 3 and 20% were also classified as ‘Mollic’ or ‘Umbric’ 

(depending on pH) as it was assumed that these horizons were dark enough to fulfil the colour 

requirement. 

The SSEW classification is a hierarchical system comprising the following classes from the least to the 

most detail in terms of soil description (Avery, 1980): Major Soil Group (e.g. 5. Brown Soils), Soil 

Group (e.g. 5.4 Brown Earths), Soil Sub-Group (e.g. 5.42 Stagnogleyic Brown Earth), Soil Series (e.g. 

Papworth). The classes are differentiated primarily on the composition of soil material within 

specified depths and the presence or absence of diagnostic horizons or features. Where these 

features have similar classification rules to WRB a direct correlation is achieved from the soil class 

(soil group or sub-group) to a WRB RSG. For example the classification of the sub-group ‘5.4 Brown 

Earth’ requires a weathered B-horizon in the SSEW system and this definition correlates with the 

Cambic horizon in WRB, thus correlating to a Cambisol RSG. In some cases the definitions did not 

correlate completely or there was some ambiguity in the SSEW definitions, thus additional criteria 

were necessary to assign the RSG. For example ‘3.4 Rendzinas’ have a depth definition of calcareous 

bedrock within 30 cm and this encompasses the requirements for Leptosols and Cambisols in WRB, 

the former having shallower depth criteria. Therefore additional information on soil depth was used 

to differentiate between Cambisol and Leptosol.  

The correlation resulted following RSGs identified in the validation dataset: Anthrosols, Arenosols, 

Cambisols, Leptosols, Regosols, Histosols, Luvisols, Podzols, Fluvisols, Gleysols and Stagnosols. The 

e-SOTER legend comprises some simplification of the RSGs as a result of the methodologies in WP2 

(Deliverable D5) used to create the spatial dataset for the soil component of the e-SOTER units. This 

results in Fluvisols, Gleysols and Stagnosols grouped as Hydromorphic soils. Anthrosols are not 

distinguished in the legend used to classify the soils of the soil component. In the generalized legend 

Anthrosols are included in the Dark Soil group. Table 4.1 summarizes the soil correlation from SSEW 

classification to WRB, including the method used to determine the WRB qualifiers. 

Because soil information contained in the profile descriptions was often not detailed enough to 

determine the RSG with negligible error, we relaxed the validation criteria for several RSGs. 

Validation locations where a Gleyic/Stagnic Luvisol or Gleyic/Stagnic Cambisol was observed but 

where a Hydromorphic soil was mapped were considered correctly mapped. The same holds for 

Luvic Hydromorphic soils mapped as Luvisols or as the Luvisol/Alisol association. 
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Table 4.1. Soil correlation from SSEW classification to WRB. 

SSEW Soil 

Group
a 

 

SSEW Soil Group 

descriptor  

RSG direct 

correlation
b
  

RSG other 

criteria  

Qualifiers by sub-group or 

soil series definition
c
 

Qualifiers by numerical 

thresholds 

1.1 Raw sands Arenosol   Histic, Mollic 

1.2 Raw alluvial soils Fluvisol   Umbric, Mollic, Arenic, 

Clayic 

1.3 Raw Skeletal soils Regosol   Arenic 

1.5 Man-made raw 

soils 

Regosol   Arenic 

2.2 Unripened gley 

soils 

Fluvisol  Gleyic Umbric, Mollic, Arenic, 

Clayic 

3.1 Rankers Cambisol or 

Leptosol 

Depth and 

Stoniness 

Leptic, Lithic, Skeletic Umbric, Mollic, Vertic, 

Clayic 

3.3 Ranker-like 

alluvial soils 

Fluvisols  Skeletic, Calcaric, Gleyic Umbric, Mollic, Arenic, 

Clayic 

3.4 Rendzinas Cambisol or 

Leptosol 

Depth and 

Stoniness 

Rendzic, Calcaric, Skeletic, 

Gleyic, Stagnic, Leptic, 

Lithic 

Umbric, Mollic, Vertic, 

Clayic 

3.5 Pararendzinas Cambisol or 

Leptosol 

Depth and 

Stoniness 

Rendzic, Calcaric, Skeletic, 

Gleyic, Stagnic 

Umbric, Mollic, Vertic, 

Clayic 

3.7 Rendzina-like 

alluvial soils 

Fluvisols  Skeletic, Calcaric, Gleyic Umbric, Arenic 

4.1 Calcareous 

Pelosols 

Cambisol  Calcaric, stagnic Histic, Mollic, Vertic, 

Clayic 

4.2 Non-calcareous 

Pelosols 

Cambisol  Stagnic Histic, Mollic, Vertic, 

Clayic 

4.3 Argillic Pelosols Luvisol  Stagnic Mollic, Vertic 

5.1 Brown Calcareous 

Earths 

Cambisol  Calcaric, Gleyic, Stagnic, 

Leptic, Skeletic 

Histic, Mollic, Vertic, 

Clayic 

5.2 Brown Calcareous 

Sands 

Cambisol or 

Arenosol 

Particle size  Calcaric Histic, Umbric, Mollic, 

Vertic, Clayic 

5.3 Brown Calcareous 

Allluvial soils 

Cambisol or 

Fluvisol 

Expert 

judgement 

Calcaric, Gleyic Histic, Umbric, Mollic, 

Vertic, Arenic, Clayic 

5.4 Brown Earths Cambisol  Leptic, Stagnic Histic, Mollic, Vertic, 

Clayic 

5.5 Brown Sands Cambisol or 

Arenosol 

Particle size  Gleyic Histic, Mollic, Vertic, 

Clayic 

5.6 Brown Alluvial 

soils 

Cambisol  Stagnic, Gleyic Histic, Mollic, Vertic, 

Clayic 

5.7 Argillic Brown 

Earths 

Luvisol  Stagnic, Gleyic Mollic, Vertic, , Arenic 

5.8 Paleo-argillic 

Brown Earths 

Luvisol  Stagnic, Gleyic Mollic, Vertic, , Arenic 

6.1 Brown Podzolic Cambisol   Histic, Mollic, Vertic, 
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soils Clayic 

6.3 Podzols Podzol  Skeletic, Albic, Gleyic, 

Stagnic 

Histic, Umbric 

7.1 Stagnogley soils Stagnosol  Luvic Umbric, Mollic, Vertic,  

Arenic, Clayic 

7.2 Stagnohumic gley 

soils 

Stagnosol   Umbric, Mollic, Vertic,  

Arenic, Clayic 

8.1 Alluvial gley soils Fluvisol   Histic, Umbric, Mollic, 

Arenic, Clayic 

8.2 Sandy gley soils Gleysol   Histic, Umbric, Mollic, 

Arenic, Clayic 

8.3 Cambic gley soils Gleysol   Histic, Umbric, Mollic, 

Arenic, Clayic 

8.4 Argillic gley soils Gleysol  Luvic Histic, Umbric, Mollic, 

Arenic, Clayic 

8.5 Humic-alluvial 

gley soils 

Fluvisol   Histic, Umbric, Mollic, 

Arenic, Clayic 

8.6 Humic-sandy gley 

soils 

Gleysol   Histic, Umbric, Mollic, 

Arenic, Clayic 

8.7 Humic gley soils Gleysol  Luvic Histic, Umbric, Mollic, 

Arenic, Clayic 

9.1 Man-made humus 

soils 

Anthrosol   Arenic, Clayic 

9.2 Disturbed soils Regosol   Arenic 

10.1 Raw Peat soils Histosol    

10.2 Earthy peat soils Histosol    

a
 For Soil Groups in validation dataset only. 

b
 Soil group definition meets criteria for WRB definition for RSG. 

c
 Soil sub-group or soil series definition meets criteria for WRB qualifier. 

 

4.2.3 Validation of the soil component of the e-SOTER units 

Figure 4.1 (bottom) shows the e-SOTER soil map. Here the dominant soil group in the soil 

component associated to an individual e-SOTER unit is used for mapping. 

 

Stringent mode, full legend 

Table 4.2 presents the sample error matrix of mapped soil group, which corresponds to the 

dominant soil group of the e-SOTER units that contain the validation locations (Figure 4.2, bottom), 

against the observed soil group (Figure 4.2, top). The overall purity is 51.0%, which means that for 

51% of the mapped area the dominant soil group correctly predicts the actual soil group. By 

contrast, the overall purity of the 1:250,000 soil map with WRB legend (Figure 4.1, top) is 68.0%, as 

estimated from the validation sample. Nevertheless, a purity between 50-60% can be considered an 

adequate result for a map constructed with digital soil mapping (Kempen et al., 2009; Kempen et al., 
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2012), especially given the 1:1M scale of the e-SOTER soil map (given a legend, the map units of a 

soil map generally become less pure when map scale decreases) and the fact that for each SOTER 

unit the dominant soil group is used to predict the soil at any location within that unit. The expected 

(or theoretical) purity (Brus et al., 2008; Kempen et al., 2009) of the e-SOTER soil map is computed 

by averaging the areal proportions of the dominant soil groups of the e-SOTER units and equals 

70.1%. The 19% difference between theoretical and overall purity might indicate that soil spatial 

variation within the terrain units is somewhat larger than indicated by the soil database.  

Figure 4.3 (top) shows the validation locations with correct and incorrect classification. A major 

source of mapping error is the area mapped as ‘Histosol’ in the north-central part of the validation 

area. The map purity of this map unit is only 8% (Table 4.3). At 116 validation locations in this map 

unit (77%) a hydromorphic soil is observed, indicating wet conditions but absence of peat. The 

‘Podzol’ map unit, found in the south-central part of the validation area, is another important error 

source. Podzols seem over-represented on the e-SOTER soil map. On this map the Podzol map unit 

covers 2949 km2, whereas on the England-Wales map (Figure 4.1, top) these soils cover 1269 km2. 

Furthermore, at only 14 out of 118 validation locations in the Podzol map unit a Podzol is observed, 

resulting in a map unit purity of only 11.9%. Luvisols (map unit purity around 40%) are mainly 

confused with Cambisols and Cambisols (map unit purity 50%) with Luvisols. The ‘Hydromorphic’  

map unit is the most pure (71%). This soil also has the largest class representation (68%), followed by 

Luvisols, Histosols and Cambisols.  

Leptosols are never the dominant soil group in the e-SOTER soil map. This soil group  therefore has a 

class representation of 0%. However, these soils cover 6,150 km2 (or 10% of the area) on the soil 

map of England-Wales and are observed at 87 validation locations, mainly in the south-eastern part 

of the area (Figure 4.1, top). Arenosols are observed at 73 validation locations but are mainly 

mapped as Luvisols / Alisols. Anthrosols are not distinguished in the e-SOTER soil legend and 

therefore have a class representation of 0%. Phaezems are mapped as the dominant soil in a tiny 

part (70 km2) of the validation area. These soils, however, do not occur in the UK and are therefore 

not observed in the validation dataset. Occurrence of these soils on the e-SOTER soil map is an 

artefact of the mapping method. Predictive relations (mapping rules) between soils and remote 

sensing imagery derived for the Central European window (where Phaeozems do occur) are 

extrapolated to the UK part of the Western European window causing occurrence of Phaeozems. 

The observed Regosols correlate to soil group 9.2 (Disturbed soils) in the SSEW classification scheme 

and are typical for areas where for example land has been restored after open-cast mining. The e-

SOTER method does not aim to map such soils. 

 

Stringent mode, generalized legend 

Table 4.4 shows the error matrix of mapped against observed soil group for the generalized legend. 

The overall purity is 50.8%, nearly equal to the overall purity of the map with the full legend. Also 

the map unit purities and class representations (Table 4.5) are roughly similar to those of the full 

legend. Grouping the WRB soil groups into twelve classes apparently did not affect the accuracy for 

the UK validation area. 
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Flexible mode 

For the flexible mode the overall purity is 89.8% for validation of the full legend. This means that for 

almost 90% of the validation area the actual soil group is included in the soil component of the 

SOTER units. Figure 4.3 (bottom) shows the validation locations with correct and incorrect 

classification. Locations where the actual soil group is not part of the SOTER unit soil component are 

mainly located in the south-west parts of the UK validation area. In these parts Leptosols are 

observed but are not part of the soil components associated to the SOTER units in that area, while in 

the northeast parts this is true for the observed Arenosols and Podzols. 

From the stringent mode we saw that for 51% of the validation locations the observed soil group 

equals the dominant soil group in the SOTER unit. Table 4.6 lists the soil component number of the 

SOTER unit of which the associated soil group equals the observed soil group. From this table it can 

be observed that for 77% of the validation area the actual soil type equals the first, second or third 

dominant soil group of a e-SOTER unit. For the generalized legend the overall purity for the flexible 

mode is 91.6%. 
 

Table 4.2. Error matrix of mapped (dominant) soil group against observed soil group for the full legend. Bold 

type indicate thes number of validation locations for which the mapped soil group corresponds to the 

observed soil group. 

Mapped RSG Observed RSG Total 

  AT AR CM HS HY LP LV PZ RG 
 

AR 0 0 1 0 0 1 0 0 0 2 

CM 1 8 207 0 69 16 102 0 12 415 

HS 0 0 17 12 116 0 2 2 1 150 

HY 5 13 104 1 640 17 62 17 37 896 

LV 0 1 70 3 13 45 79 1 1 213 

LA 9 45 80 7 58 2 157 7 3 368 

PH 0 0 1 0 1 0 0 0 0 2 

PZ 0 6 19 0 39 6 33 14 1 118 

RG 0 0 6 0 5 0 1 0 0 12 

Total 15 73 505 23 941 87 436 41 55 2176 
 

Table 4.3. Estimated map unit purities of and class representations based on an e-SOTER soil map with the full 

legend that depicts the dominant soil group of the soil components. 

Soil group Map unit purity (%)  Class representation (%) 

Anthrosol -
a
  0 

Arenosol  0  0 
Cambisol 49.9  41.0 
Histosol 8.0  52.2 
Hydromorphic 71.4  68.0 
Leptosol -

b
  0 

Luvisol 37.1  54.1 
Luvisol/Alisol 42.7  -

c
 

Phaeozem 0  -
c
 

Podzol 11.9  34.1 
Regosol 0  0 
a
 Not distinghuised in the e-SOTER soil component database. 

b
 Not mapped as dominant soil group in UK validation area. 

c
 Not observed in the validation dataset. 



Report Deliverable No D10  e-SOTER 

 

30 

 

Table 4.4. Error matrix of mapped (dominant) soil group against observed soil group for the generalized 

legend.  

Mapped RSG Observed RSG Total 

  AG AR CM DK HS HY PZ SH 
 

AG 239 46 152 9 10 74 8 51 589 

AR 0 0 1 0 0 0 0 1 2 

CM 101 8 205 1 0 67 0 28 410 

DK 1 0 1 0 0 5 0 1 8 

HS 2 0 17 0 12 116 2 1 150 

HY 62 13 104 5 1 635 17 53 890 

PZ 33 6 19 0 0 36 14 7 115 

SH 1 0 6 0 0 5 0 0 12 

Total 439 73 505 15 23 938 41 142 2176 

 

 

Table 4.5. Estimated map unit purities of and class representations based on a SOTER soil map with the 

generalized legend that depicts the dominant soil group of the soil components. 

Soil group Map unit purity (%) Class representation (%) 

AG 40.6 54.4 
AR 0 0 
CM 50.0 40.6 
DK 0 0 
HS 8.0 52.2 
HY 71.3 67.7 
PZ 12.2 34.1 
SH 0 0 

 

 

Table 4.6. Soil component number for which the soil group equals the observed soil group. Here 1 is the 

dominant (largest areal coverage of the SOTER unit) soil group, 2 is the second dominant soil group, etc. n is 

the number of validation locations, % is the percentage of the total number of validation location and 

‘Cumulative’ is the cumulative percentage. 

Soil Component n % Cumulative 

1 1109 51.0 51.0 
2 315 14.5 65.4 
3 248 11.4 76.8 
4 150 6.9 83.7 
5 85 3.9 87.6 
6 32 1.4 89.1 
7 8 0.4 89.5 
8 6 0.3 89.8 
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Figure 4.1. The 1:250,000 soil map of England and Wales based on WRB (top) and the 1:1M e-SOTER soil map 

where the dominant soil group of the e-SOTER units is used for mapping (bottom). 
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Figure 4.2. Observed WRB soil group (top) and dominant WRB soil group in the e-SOTER soil component 

(bottom) at the UK validation sites. 
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Figure 4.3. Validation results for the stringent mode (top) and flexible mode (bottom) and full legend. 
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4.3  Application to German-Czech part of the Central European window  

 

4.3.1 Soil data 

The Czech validation dataset contained 437 localized soil profiles distributed evenly in the Czech part 

of the Central European window. Profiles were selected proportionally according to spatial extent of 

each soil type (unit) from the Czech soil database. The database includes analysed soil profiles from 

the detailed maps of the Systematic Soil Survey, a large mapping campaign realized in 1961-1971 

that resulted in a set of 1:10,000 soil maps for arable lands. Figure 4.4 gives an overview of the 

content of each soil profile description. A description includes soil classification according to the 

Czech Taxonomic Classification System of Soils (CTCSS, Němeček et al. 2011), soil profile structure 

(horizon thickness), soil horizons definition and naming according to CTCSS up to 150 cm, 

morphologic soil properties (such as stagnic and gleyic conditions, albeluvic tonguing etc.), and 

parent material. Analytic soil properties for each horizon include particle size distribution, soil 

organic carbon, CaCO3 content, pHH2O, pHKCl, CEC and base saturation. Soil profiles were localized and 

digitized from the maps of the Systematic Soil Survey using their unique identifiers. 

 

Figure 4.4. Example of a validation profile from the Czech soil database with available morphological and 

analytic data. 

 

 

The German validation dataset comprised 252 soil profiles in the German part of the Central 

European pilot area. The profile data were provided by the Saxon State Agency for Environment, 

Agriculture and Geology. Generally, soil profile description comprises soil classification, substrate 

classification, soil horizon specification, parent material, and analytic soil properties for each horizon 

such as texture, bulk density, field capacity, cation exchange capacity, exchangeable cations and pH.  

In total 689 soil profiles were available for validation. Three profiles were discarded because these 

were located outside the validation area, leaving 683 profiles that were used.  

 

4.3.2 Soil correlation 

 

Czech Republic 

The validation dataset provides a solid base for correlation of the Czech and WRB soil classification 

systems as the majority of analytical data needed for the classification in WRB are available for the 

whole profile. Quantified data were sufficiently available which allowed us to use an approach based 
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on classifier rules with numerical data thresholds. Direct semantic (analog soil units provided by 

expert knowledge) correlation was possible for soil groups where the classification criteria of the 

WRB and CTCSS were equal. In case of a partial miss of the data, profiles were correlated using 

expert judgement. 

Soil classification in the Czech Republic is guided by the Czech Taxonomic Classification System of 

Soils (CTSS, Němeček et al., 2011). The CTCSS classification was designed to meet the requirements 

for effective correlation of the higher taxonomical units with international taxa. Consequently, the 

principle of morphogenetic feature preference was substituted for the analytical data approach. 

Assessment of the higher taxonomical units is based on diagnostic horizons and features below 

0.25 m of depth (to reduce the influence of different land uses on soil properties). The CTCSS is a 

multi-categorical system. Reference groups, soil types and subtypes reflect results of long-term soil 

evolution. Reference groups represent a linkage to the highest taxonomic categories of the world 

reference systems (WRB, Soil Taxonomy) and other well-known soil classification systems (German, 

French, Canadian). Soil types (great soil  groups) are a central taxonomic category, which involves 

soil being characterised by a specific sequence of diagnostic horizons and/or diagnostic features. 

Subtypes as subdivisions of the soil types include modal (typical), inter-grade representatives, 

extreme debasification degrees and extremes of the soil texture (Němeček et al., 2011). Subtypes 

serve the same role as the qualifiers in WRB, but their criteria vary slightly in some soil types in 

CTCSS (e.g. the Arenic subtype has different limits in Černozem and in Kambizem). 

The CTCSS soil types and their WRB counterparts are presented in Table 4.7. Only a few soil types 

could be directly correlated to the RSGs of WRB. Semantic correlation was used in case of complete 

agreement between the classification criteria in WRB and CTCSS. This condition is fulfilled mostly in 

soils defined by morphological properties. Directly correlated soil types include Fluvisols, Gleysols, 

Stagnosols and Vertisols. Another example of possible direct correlation are soils defined by clay 

migration in the profile (Hnědozem and Šedozem/Luvisols). Minimum values required for luvic/argic 

horizon in CTCSS are higher (clay ratio between Bt- and E-horizons 1.3) than in WRB (clay ratio 1.2) 

and presence of clay coatings is compulsory. This implies an automatic conversion of the luvic 

horizon in CTCSS to an argic horizon in WRB. A similar approach was used in case of Luvic Cambisols 

in CTCSS. In CTCSS, the subtype Luvic is defined by presence of clay coatings in the B horizon. This 

criterion is sufficient for identification of an Argic horizon in WRB. All Luvic Cambisols in CTCSS could 

be then correlated as Luvisols in WRB.  

Other soil types were correlated using numeric limits required in WRB. Available profile analytical 

data were sufficient to distinguish Argic, Mollic, Spodic and Calcic horizons. Expert judgement was 

applied in case of lack of data.  

The following WRB RSGs were identified: Albeluvisol, Arenosols, Cambisols, Fluvisols, Gleysols, 

Chernozems, Leptosols, Luvisols, Phaeozems, Planosols, Podzols, Regosols, Stagnosols, Vertisols. 

According to simplifications of the e-SOTER legend resulting from WP2 methodology, some of the 

RSGs were grouped: Fluvisols, Gleysols, Stagnosols and Planosols were grouped as Hydromorphic 

soils, Albeluvisols and Luvisols were grouped as Luvisols and Luvisols/Alisols.  

 



Report Deliverable No D10  e-SOTER 

 

36 

 

 

Table 4.7. CTCSS soil types and their WRB counterparts according to Němeček et al. (2011). 

CTCSS soil group WRB06 RSG (qualifier) 

Litozem Lithic Leptosol 
Ranker Leptosol (Skeletic) 
Rendzina Rendzic Leptosol 
Pararenzdina  Leptosol (Calcaric) 
Regozem Regosol, Arenosol 
Fluvizem Fluvisol 
Koluvizem - 
Smonice Vertisol 
Černozem Chernozem 
Černice Gleyic Chernozem 
Šedozem Greyic Phaeozem 
Hnědozem Luvisol 
Luvizem Albeluvisol 
Kambizem Cambisol 
Pelozem Cambisol (Clayic) 
Kryptopodzol Entic Podzol 
Podzol Podzol 
Pseudoglej Stagnosol 
Stagnoglej Stagnosol 
Glej Gleysol 
Organozem Histosol 
Kultizem Anthrosol 
Antropozem Technosol 

 

In addition, the effectiveness of a semantic (direct) approach and quantitative approach for soil 

correlation was evaluated. Table 4.8 presents the level of correlability which is the percentage of 

profiles of a certain CTCSS soil type that falls into a certain WRB soil group after correlation. This may 

or may not be the analogical soil group. Correlation at the lower level included only subtypes/ 

qualifiers that occurred in more than five soil profiles in one or both of the classification systems. 

Average correlability at soil type level was 88%. Overall accuracy of the correlation is high but there 

is considerable variation (from 50% to 100%) between the soil types. Ten Czech soil types have high 

(80–100%) correlability, seven soil types have intermediate (60–80%) correlability and one soil type 

has low (less than 60%) correlability. The conversion of some soil types, for instance Rankers, 

Rendzinas, Pararendzinas, Černice, Černozems, Podzols or Luvizems, has low accuracy and requires 

analytical and morphological data of corresponding profiles. Other soil types such as Glejs, Fluvizems 

or Hnědozems can be correlated with a high probability of accurate assignment. The analysis 

showed high incompatibility at the level of soil subtypes/qualifiers (Table 4.9). Correlation at the 

lower taxonomical level should be subject to analytical processing of quantitative soil data. Three 

main causes of problems in correlating the WRB and the CTCSS are different concepts or criteria of 

the soil unit, different limit values and indistinct criteria in CTCSS. The most frequent problem is the 

different setting of limit values. Zádorová and Penížek (2011) provide further details on this analysis. 
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Table 4.8.  Correlability of soil types in CTCSS and WRB 2006 (soil types and Reference Soil Groups + main 

qualifiers) . 

CTCSS WRB 2006 Correlability (%) Accesory units  

Ranker Haplic Leptosol 67 Leptic Cambisol 
Rendzina Leptosol (Calcaric) 75 Cambisol (Eutric) 
Pararendzina Leptosol (Calcaric) 92 Cambisol (Eutric) 
Regozem Regosol 80 Chernozem 

Regozem Arenic Arenosol 100 - 
Fluvizem Fluvisol 100 - 
Smonice Vertisol 100 - 
Černozem Chernozem 91 Phaeozem, Regosol 
Černice Gleyic Chernozem 67 Gleyic Phaeozem 
Šedozem Luvic Greyic Phaeozem 100 - 
Hnědozem Luvisol 100 - 
Luvizem Albeluvisol 63 Albic Luvisol 
Kambizem Cambisol 94 Luvisol, Arenosol 
Pelozem Cambisol (Clayic) 50 Cambisol (Siltic) 
Kryptopodzol Entic Podzol 100 - 
Podzol Podzol 67 Cambisol (Dystric) 
Pseudoglej Stagnosol 74 Planosol, Stagnic Albeluvisol 
Glej Gleysol 100 - 
total   88  

 

Table 4.9.  Correlation at the lower taxonomical level. 

CTCSS subtype Count Criteria CTCSS WRB 
qualifier 

Count Criteria WRB 

arenic 19 sand, loamy sand or sand, 
loamy sand, sandy loam 

Arenic 1 sand, loamy sand in a layer 30 cm 
or more thick 

pelic 111 clay, sandy clay, silty clay, 
sandy clay loam, clay 
loam, silty clay loam 

Clayic 29 clay in a layer 30 cm or more thick 
 

dystric 22 BS less than 30 % Dystric 81 BS less than 50 % 
luvic 52 Variable criteria in 

different soil types 
Luvic 28 having a luvic horizon 

stagnic 47 medium redoximorphic 
features within 60 cm 
from soil surface 

Stagnic 110 25 % or more of soil volume 
stagnic colour pattern within 100 
cm from soil surface 

gleyic 15 strong reducing 
conditions below 60 cm 
from soil surface 

Gleyic 36 25 % or more of soil volume gleyic 
colour pattern within 100 cm 
from soil surface 

 

Germany 

The information of the German soil profile data set is mainly restricted to the soil type, substrate, 

parent material, texture, pH (CaCl2), and organic carbon. Information about cation exchange 

capacity, exchangeable cations, base saturation is quite incomplete. The correlation from German 

soil classification in WRB (RSG and qualifiers) is therefore mainly based on expert knowledge and 

recommendations according to Ad-hoc-AG Boden (2005). As the concept of the German soil 

classification is based on soil genesis as expressed by characteristic horizon sequences (Ad-hoc-AG 
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Boden 2005), it is possible to derive WRB 2006 RSGs from the German soil type under consideration 

of parent material and local climate.  

 

Table 4.10. Correlation between WRB and German soil classification. 

KA5 soil type WRB 2006 Prefix Suffix N 

AB-GG Fluvisol Gleyic Siltic 3 
AB-GG Fluvisol Gleyic Skeletic 3 
AB-GG Fluvisol Gleyic  4 

ABn Fluvisol Haplic Skeletic 1 
ABn Fluvisol Haplic  2 
BBn Cambisol Haplic  49 
BBn Cambisol Haplic Skeletic 4 

BB-PP Podzol Haplic  9 
BB-PP Podzol Haplic Skeletic 15 
BB-SS Luvisol Stagnic  1 
BB-SS Cambisol Stagnic  1 
GGa Fluvisol Gleyic Skeletic 3 
GGa Fluvsiol Gleyic  1 
GGa Fluvisol Gleyic  10 
GGa Gleysol Haplic Siltic 1 
GGa Fluvisol Gleyic Siltic 1 
GGn Gleysol Haplic  10 
GGn Gleysol Haplic Siltic 2 
GGn Gleysol Haplic Skeletic 1 
GGn Gleysol Histic  1 
LF-SS Stagnosol Luvic Albic 3 
LF-SS Luvisol Stagnic  1 
LLn Luvisol Haplic Abruptic 1 
LLn Luvisol Haplic  2 

LL-SS Stagnosol Luvic Albic, Dystric 1 
LL-SS Stagnosol Luvic  14 

pBB\PP Podzol Haplic Skeletic 1 
pBBn Cambisol Haplic Dystric, Skeletic 1 
pBBn Cambisol Haplic Dystric 1 
pBBn Cambisol Haplic  2 
PPn Podzol Haplic Skeletic 12 
PPn Podzol Haplic  8 

pSS-LF Luvisol Albic  1 
RQn Leptosol Hyperskeletic  1 
RQn Regosol Haplic  3 
RQn Regosol Haplic Skeletic 1 
RQn Regosol Haplic Skeletic, Transportic 4 
RQn Regosol Haplic Transportic 4 
SGn Stagnosol Haplic Albic, Dystric 1 

SS-LF Luvisol Albic  1 
SS-LL Luvisol Stagnic  4 
SS-LL Luvisol Stagnic Hypereutric 1 
SS-LL Luvsiol Stagnic  1 
SSn Stagnosol Haplic  7 
SSn Stagnosol Luvic  1 

sYK-GG Gleysol Mollic  1 
YKn Cambisol Haplic Colluvic, Dystric 1 
YKn Cambisol Haplic Colluvic 6 
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The German “Gley-Vega” has both a gleyic colour pattern and fluvic material, suggesting Gleyic 

Fluvisols. The German “Vega” has fluvic material starting within 25 cm from the soil surface and no 

other diagnostic horizons and properties. Consequently, it fulfills the requirements of Haplic 

Fluvisols. “Braunerde-Podzols” have a spodic horizon and fulfill the requirements of Haplic Podzols. 

Haplic Podzols are quite common at highest elevations on the different granites of the Ore 

mountains. “Braunerde-Pseudogleys” show a stagnic colour pattern, sometimes clay enriched 

subsoils and sometimes a Cambic horizon. Soils without clay illuviation are Stagnic Cambisols, while 

soils which fulfill the criteria of an Argic horizon can be classified as Stagnic Luvisols. Luvisols require 

a base saturation of more than 50% in the major part between 50 and 100 cm soil depth. This 

condition is commonly fulfilled where the parent material contains carbonates (e.g. loess) or where 

the parent material is not too siliceous or the pH values are rather high. The “Gleye” soils have a 

gleyic colour pattern and can be classified as Gleysols. Those with fluvic material within 25 cm from 

the soil surface are classified as Gleyic Fluvisols. “Parabraunerden” have an Argic horizon. 

Parabraunerden are widespread in loess areas, suggesting a base saturation of more than 50% and 

can be classified as Haplic Luvisols. “Braunerden” have a horizon sequence matching the 

requirements of a Cambic horizon an can be translated as Haplic Cambisols. “Regosole” are soils at 

the initial state of soil formation and can be translated in Haplic Regosols. “Fahlerden” show in 

addition to “Parabraunerden” an Albic horizon and can be classified as Haplic Luvisols (Albic). Table 

4.10 summarizes soil correlation for the German part of the Central European window. 

 

4.3.3 Validation of the soil component of the e-SOTER units 

Figure 4.5 shows the e-SOTER soil map. Here the dominant soil group in the soil component 

associated to an individual e-SOTER unit is used for mapping. 

 

Stringent mode, full legend 

Table 4.11 presents the sample error matrix of mapped soil group, which corresponds to the 

dominant soil group of the e-SOTER units that contain the validation locations (Figure 4.6, bottom), 

against the observed soil group (Figure 4.6, top).  The overall purity is 32.1% (30.1% in the Czech part 

and 32.3% in the German part of the window). The rather low purity can be assigned to high 

variability of the soil cover and often low dominancy of the dominant soil unit in the SOTER units. 

The difference between the overall purity in the CE and WE windows is remarkable (32.1% for the CE 

and 51% for the WE window, see section 4.2). The source of this discrepancy can be explained by the 

fact that the validation criteria for several RSGs were relaxed in the WE window. This flexibility refers 

to soil groups with stagnic and gleyic properties (section 4.2.3). By contrast, the dataset available for 

the CE window was considered of sufficient quality and completeness for more strict validation 

criteria. This means that the location where e.g. Stagnic Luvisol was observed, was considered 

correct only if Luvisol or Luvisol/Alisol was mapped. When taking into account the large area of soils 

influenced by water stagnation in the CE window, the use of strict or relaxed validation can result in 

significantly different overall purities. 
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Figure 4.7 (top) shows the validation data set with correct and incorrect classification. The errors are 

fairly evenly distributed in the window which corresponds with the low overall purity. Nevertheless, 

the most remarkable error accumulations can be found in three parts of the window: two lowland 

areas in Central Bohemia and Southern Moravia, represented by loess-derived loamy soils, and SW 

Germany where a large number of Podzols are incorrectly mapped as Cambisols.    

 

 
Figure 4.5. The 1:1M e-SOTER soil map where the dominant soil group of the e-SOTER units is used for 

mapping. Largest part of the area is in the Czech Republic, while the north-western corner lies in Germany. 

 

The soil groups show different levels of accuracy. The most problematic soil units are Chernozems , 

Podzols, Cambisols and Luvisols. Chernozems and Phaeozems were represented by 63 soil profiles in 

the validation dataset (almost exclusively occurring in the Czech part of the window). However, the 

class representation of the two RSGs is very low (4% for the Chernozems and 0% for Phaeozems 

which means that the latter is never the dominant RSG in e-SOTER soil map). This result indicates 

that the area with mollic soils is heavily under-represented on the e-SOTER soil map (Figure x), which 

is confirmed when this map is compared to Czech soil maps. The majority of the observed 

Chernozems and Phaeozems are mapped as Luvisols and Regosols. Soil pedons dominated by mollic 

soils are adjacent to the Luvisol areas and both soil units are complementary in a large area of flat 

and slightly undulating terrain of lowlands and plains. The association of Chernozems with Regosols 

is due to the long-term evolution of the agricultural land. Most of the area is situated in the 

undulating relief underlain by silty sediments. Chernozems are extremely vulnerable to the soil 

erosion and nowadays the former Chernozem region is a mosaic of Chernozems and its eroded form, 

the Regosol, on the steep slopes and its accumulated forms, deep colluvial soils. The process of the 

material redistribution was accelerated in last 60 years so that the situation in the 1960s, when the 
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soil survey was implemented, was different and the area of Regosols has expanded ever since. The  

high map unit purity (66.7%) of the Mollic soils has to interpreted with care because there were only 

three validation locations situated within a mapped mollic soil group. 

 

Figure 4.6. Observed WRB soil group (top) and dominant WRB soil group in the e-SOTER soil component 

(bottom) at the Central European validation sites. 
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Figure 4.7. Validation results for the stringent mode (top) and flexible mode (bottom) and full legend. 
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Podzols dominate large parts of SW Germany and neighbouring Czech regions. However, these soils 

were not indicated as a dominant soil group in any of the e-SOTER soil components, while these 

were represented by 63 profiles in the validation dataset (52 in the German part). Podzols are 

prominent mostly in the windward granite part of the Ore mountains, where the acid parent 

material and high precipitation amount imply the podzolization process of variable intensity. 

However, they are often associated with Cambisols, Hydromorphic and undeveloped soils so the 

confusion with these units is comprehensible. The fact that there were only twelve Podzol profiles 

available in the CE training dataset (Table 1 of Deliverable D5) might have hampered mapping of this 

soil group and might therefore contribute to the poor validation results for the Podzols. 

Cambisols, Luvisols, Hydromorphic soils and Leptosols form the majority of the soil cover in highland 

regions of the Czech Republic. The four groups have different intergrades represented by transitional 

soil units and often can be found in associations. Medium or low map unit purity and class 

representation of these soils and fact that a large part of for example Cambisols (map unit purity 

46.4%) falls in the soil component dominated by Luvisols (map unit purity 25.2%)  or Hydromorphic 

soils  (map unit purity 26.2%)  and vice versa can be then assigned to the rather low dominancy of 

any of these units and their complementarity. The most significant difference between map unit 

purity (26.2%) and class representation (40%) occurs in the Hydromorphic soil unit; it was mapped as 

a dominant unit at a large part of the area (Figure4.5) and it seems over-represented in the e-SOTER 

map. However, a majority of the soil units forming the soil cover in these regions are more or less 

influenced by reducing conditions. Soils meeting the criteria limits for classification as Hydromorphic 

and soils having only stagnic/gleyic qualifier vary at short distances and form a complex mosaic. 

Moreover, especially Stagnosols are naturally associated with clay illuviated soils which explains a 

partial misclassification between Luvisols and Hydromorphic soils. Leptosols have very low both map 

unit purity and class representation (both around 4%). These are confused mostly with Cambisols, 

Luvisols and Hydromorphic soils. 

 

Stringent mode, generalized legend 

Table 4.13 shows the error matrix of mapped against observed soil groups for the generalized 

legend. The overall purity is 31.2% (29% in the Czech part and 34.9% in the German part of the CE 

window). The overall purity for the generalized legend is very similar to the overall purity for the full 

legend. The effect on map unit purity and class representation varied between soil groups (Table 

4.14). Argic soils were better represented, while Cambisols had smaller map unit purity and class 

representation for the generalized legend. 

 

Flexible mode 

The overall purity for the flexible mode is 83% for the full legend and 86% for the generalized legend 

(87% and 92% in the Czech part and 76% and 76% in the German part). This means that the e-SOTER 

soil component includes the observed soil group in more than 80% of the validation area. The large 

difference between overall purities in stringent and flexible modes is due to a high spatial variation 
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of the soil units and generally low dominancy of any soil unit in the soilscape. Figure 4.7 (bottom) 

shows the validation locations correctly and incorrectly classified. The only area of accumulated 

incorrect validation is in the SW part of the Ore mountains where Podzols are observed but not 

included in the e-SOTER soil components.  

 

 

Table  4.11. Error matrix of mapped (dominant) soil group against observed soil group for the full legend. Bold 

type indicate the number of validation locations for which the mapped soil group corresponds to the observed 

soil group. 

Mapped RSG Observed RSG Total 

 AR CM HS HY CK LR LV PH PZ RG VT  

AR 0 0 0 0 0 0 0 0 0 0 0 0 
CM 1 121 0 53 2 5 26 0 46 7 0 261 
 HS 0 0 0 0 0 0 0 0 0 0 0 0 
 HY 2 83 0 60 7 7 52 5 8 5 0 229 
CK 0 0 0 0 2 0 0 1 0 0 0 3 
LR 0 2 1 5 1 1 4 0 8 0 0 22 
LV 0 15 0 6 3 0 4 0 1 0 0 29 
LA 2 16 0 22 18 9 30 4 0 4 1 106 
PH 0 0 0 0 0 0 0 0 0 0 0 0 
PZ 0 0 0 0 0 0 0 0 0 0 0 0 
RG 0 3 0 4 18 3 2 2 0 0 1 33 
VT 0 0 0 0 0 0 0 0 0 0 0 0 

Total 5 240 1 150 51 25 118 12 63 16 2 683 

 

 

Table  4.12. Estimated map unit purities of and class representations based on an e-SOTER soil map with the 

full legend that depicts the dominant soil group of the soil components. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

a 
Not mapped as dominant soil group in CE validation area. 

b 
Not observed in the validation dataset.

 

 

 

 

 Soil group  Map unit purity (%) Class representation (%) 

Arenosol -
a
 0 

Cambisol 46.4 50.4 
Histosol -

a
 0 

Hydromorphic 26.2 40 
Chernozem / Kastanozem 66.7 3.9 
Leptosol / Regosol 4.5 4 
Luvisol 13.8 28.8 
Luvisol / Alisol 28.3 -

b
 

Phaeozem -
a
 0 

Podzol -
a
 0 

Regosol 0 0 
Vertisol -

a
 0 
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Table  4.13. Error matrix of mapped (dominant) soil group against observed soil group for the generalized 

legend. 

Mapped RSG Observed RSG Total 

  AG AR CM DK HS HY PZ SH VT  

AG 41 2 51 25 0 28 7 15 2 171 
AR 0 0 0 0 0 0 0 0 0 0 
CM 19 1 88 2 0 51 39 11 0 211 
DK 0 0 0 4 0 1 0 0 0 5 
HS 0 0 0 0 0 0 0 0 0 0 
HY 48 2 81 12 0 57 7 11 0 218 
PZ 0 0 0 0 0 0 0 0 0 0 
SH 10 0 20 20 1 13 10 4 0 78 
VT 0 0 0 0 0 0 0 0 0 0 

Total 118 5 240 63 1 150 63 41 2 683 

 

Table 4.14. Estimated map unit purities of and class representations based on a SOTER soil map with the 

generalized legend that depicts the dominant soil group of the soil components. 

 

 

 

 

 
 

 

a
 Not mapped as dominant soil group in CE validation area. 

 

  

 Soil group  Map unit purity (%) Class representation (%) 

AG 23.9 34.7 
AR -

a
 0 

CM 41.7 36.7 
DK 6.3 80 
HS -

a
 0 

HY 26.1 38 
PZ -

a
 0 

SH 5.1 9.8 
VT -

a
 0 
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5. Uncertainty Propagation Analysis 

 

5.1  Methodology 

 

5.1.1 Introduction 

Uncertainty propagation analysis analyses the effect of uncertain model inputs on model output 

(Heuvelink, 1998). In case of the e-SOTER methodology the model input is the SRTM DEM and the 

model output the physiographic unit (PU) map.  

Other inputs in the e-SOTER procedure are parent material maps (surface condition, genetics, 

texture and carbonate) and the soil component database. However, these are categorical inputs and 

the uncertainty associated to such inputs is not easily quantified (as opposed to continuous inputs 

such as elevation). Besides, these are not really used as model inputs in the e-SOTER procedure in a 

sense that the model output is a function of these inputs. The parent material maps are merely used 

to derive terrain units from the physiographic units by spatial overlay. The soil component database 

is then linked to terrain units by a common identifier. Therefore, the uncertainty propagation 

analysis focused on the effect of DEM uncertainty on the PU map. 

Uncertainty propagation analysis of DEM uncertainty is done for the WE and CE pilot areas.  

 

5.1.2 Quantifying DEM uncertainty 

The e-SOTER methodology uses the 90 m SRTM DEM to derive the PU map. This DEM is not error-

free: there will be a difference between SRTM elevation and true elevation. Therefore the first step 

is to quantify the DEM error. This is done as follows (Temme et al., 2008).  

Let us denote the true elevation as Z, about which we are uncertain. True elevation can be 

represented as the sum of the SRTM elevation z* and an unknown error ε: 

                                                                                           

where s is a spatial location. The DEM error  at location s is unknown (unless we visit the location 

and measure the true elevation), which means that the error must be quantified in terms of a 

probability distribution. A sensible and convenient distribution for the error is the normal 

distribution. This distribution is fully characterized by two parameters: the mean μ and standard 

deviation σ. If accurate measurements (preferable with negligible error) of the true elevation at a set 

of control points are available (z(si), i=1,...,n), then the ε(si) can be computed at these points (i.e. the 

difference between true elevation and SRTM elevation). From the obtained errors the mean and 

standard deviation can be estimated and thus the probability distribution of the error derived. For 

this, a simplifying stationarity assumption is needed, which is elaborated in the next section. 
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5.1.3 Modelling DEM uncertainty 

Once DEM uncertainty is quantified on the basis of a sample of elevation measurements at control 

points, the DEM uncertainty can be modelled. Hereby spatial correlation must be taken into 

account. After all, it is very likely that errors at closely located locations show similarities. To 

characterize the spatial correlation structure of the errors and to model the error in space, 

geostatistical methods are used. These methods typically assume that the mean and variance of the 

error distribution are constant in space. For the mean this is plausible but for the variance this might 

be an unrealistic assumption. It is perhaps more realistic to assume that the variance of the error is 

proportional to the ruggedness of the terrain. Therefore we model the spatially correlated residual   

in equation (6) as (Beekhuizen et al., 2011): 

                                                                                          

where      is the terrain ruggedness at location  , and where       is a spatially correlated, normally 

distributed residual with constant mean and variance. The spatial structure of       is characterized 

by the semivariogram. The semivariogram is a function that describes the degree of spatial 

dependence between two spatial locations: 

     
 

 
                                                                                  

where      is called the semivariance and  h is the lag distance, i.e. the distance between two spatial 

locations. The semivariance typically is small when h is small, i.e. when the separation distance 

between two locations is small. The semivariance is computed for all pairs of control points. These 

are then plotted against the lag distance, yielding the experimental semivariogram. Next a 

semivariogram model is fitted to the experimental semivariogram that describes the spatial 

dependence for all possible point distances, not only those in the sample. Once the spatial 

dependence structure of the standardized error is quantified, we can model DEM uncertainty at 

every location in the study area. 

We followed the approach suggested by Beekhuizen et al. (2011) to calculate the terrain ruggedness 

r(s). Terrain ruggedness r(s) is defined as the standard deviation of all DEM heights in a kernel of 

p x p pixels centred around s. The optimum value for the kernel width p can be found by calculating 

the correlation between error and ruggedness for different kernel widths. We used widths of 3, 5, 7, 

9 and 10 pixels. The kernel width with the greatest correlation coefficient is selected. 

 

5.1.4 Monte Carlo simulation for DEM uncertainty propagation analysis 

The effect of DEM uncertainty on the PUs is analysed with Monte Carlo stochastic simulation. This 

works as follows (Temme et al., 2008; Beekhuizen et al., 2011).  

A  location (a 90 m raster cell)  in the pilot area is selected at random. At this location a value from 

the probability distribution of the standardized error       is drawn and assigned to that location. At 

the second randomly selected location the conditional probability distribution of       is computed 
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by conditioning the probability distribution of       to the value that was drawn at the first location. 

Conditioning is done using the semivariogram and kriging. This ensures that the simulated values 

have the specified spatial dependence structure. Next a value is drawn from the conditional 

probability distribution and added to the dataset with simulated values  (which at this point contains 

the value simulated at the first location). This procedure is repeated until all raster cells have been 

visited. The method of visiting locations in random order and the drawing of values of the 

conditional probability distribution at each location, taking into account the values drawn at 

previously visited locations, is called unconditional sequential Gaussian simulation (Goovaerts, 

1997). 

The raster with simulations of    is transformed to simulations of   by multiplying it with the terrain 

ruggedness r. Next, the residuals   are added to the SRTM elevation measurements z*. The resulting 

raster represents one realization (out of many) of true elevation Z given the specified uncertainty 

model. The simulation procedure is repeated N times. Each simulated raster is a realization of the 

true elevation. The differences between these realizations represent the uncertainty about the true 

DEM. 

The final step in the uncertainty propagation analysis is to run the e-SOTER procedure for the N 

simulated DEMs, resulting in N physiographic unit (PU) maps. The PU maps and the landform 

attribute (LFA) maps that can be derived from the PU maps are then compared to analyse the effect 

of DEM uncertainty on these e-SOTER products.  

 

5.1.5 Analysis of DEM uncertainty on e-SOTER terrain products 

A map of each of the four LFAs was derived from each of the simulated PU maps, giving N maps for 

each LFA. From these maps the probability distribution of the LFA classes was computed for each 

location in the pilot area (a 990 m x 990 m raster cell; the output resolution of the e-SOTER 

procedure) by dividing the number of simulations of each LFA class by N. Next, from the location-

specific probability distributions the dominant LFA class was determined, which simply is the class 

with the largest probability. A map depicting the dominant LFA class was subsequently compared to 

the default LFA map. This default map was obtained by running the e-SOTER procedure with the 

original SRTM DEM of the pilot area as input.  

The Shannon entropy was used as a measure of uncertainty of the LFA classes, which is defined as: 

   ∑                                                                                    

  

   

 

where      is the probability that LFA C takes class    and    is the number of LFA classes (Brus et 

al., 2008).  We used a logarithm with base    so that the maximum entropy is 1, which occurs when 

all LFA classes have equal probability. The minimum value for the entropy is 0, which occurs when 

there is no uncertainty and one of the LFA classes has probability 1, and all others 0. 
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5.2  Application to the Western European pilot area 

 

5.2.1 Ground control points and DEM error 

Field measured ground control points were not available to quantify DEM error in the WE pilot area. 

We therefore followed the approach suggested by Beekhuizen et al. (2011) and simulated a 

collection of control points by randomly sampling the NEXTmap digital terrain model (DTM) of Great 

Britain with 10-m spatial resolution.  The vertical accuracy of this DTM is ±1 m. The elevation at the 

control points does therefore not have negligible error which is preferred for error propagation 

analysis. Nevertheless it is considerably smaller than the vertical accuracy of the SRTM DEM which 

has an absolute vertical accuracy requirement of ±16 m for 90% of the area and a relative vertical 

accuracy (the error in a local 225x225 km area) requirement of ±6 m (Rabus et al., 2003) .  

A random sample of 2,000 points was generated within a rectangle covering the WE pilot area. Of 

these 1,581 points remained after excluding points outside the pilot area (e.g. in the sea). Figure 5.1  

shows the SRTM DEM of the WE pilot area, the location of the control points and the DEM error at 

these points. The mean error is 0.11 m, the variance 3.8 m2. The maximum absolute error is 16.6 m. 

Figure 5.2 (left plot) shows a ruggedness map based on a 3 x 3 kernel, thus showing the ruggedness 

within a 270 by 270 m window. The 3 x 3 kernel ruggedness map had the strongest correlation with 

DEM error (r = 0.296) and was therefore used to compute the standardized error       . Figure 5.2 

(right plot) shows the scatterplot of the ruggedness against the absolute DEM error. 

 

 

Figure 5.1. SRTM DEM with the location of the control points (left) and the DEM error at these points (right). 
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Figure 5.2. Ruggedness map created with a 3 x 3 cell kernel (left) and correlation between 3 x 3 kernel 

ruggedness and be absolute DEM error (right). 

 

5.2.2 Modelling DEM uncertainty  

 

Figure 5.3 shows the histogram and boxplot of the standardized error. Both plots show that the 

standardized errors approximately follow the normal distribution which is convenient for modelling 

the spatial structure of the error. There are five outliers with absolute standard errors around 20 m. 

These points were excluded from the dataset for semivariogram modelling as these heavily influence 

the experimental semivariances. The experimental semivariogram was computed from the 

standardized errors at the control points. A theoretical semivariogram model was fitted from the 

experimental semivariogram with an exponential structure, a nugget of 4.39 m2, a partial sill of 

3.44 m2 and a range of 12,051 m (Figure 5.4). The semivariogram and standardized errors at the 

control points were used to generate 1,000 Monte Carlo simulations of the DEM error of which 

Figure 5.5 shows four examples. Next, the simulated fields of DEM error were added to the SRTM 

DEM to create 1,000 simulated DEMs. 

 

 

Figure 5.3. Histogram and boxplot of the standardized DEM error. 
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Figure 5.4. Experimental semivariogram of the standardized DEM error at the control points (dots) and fitted 

semivariogram model (line). 

 

 
Figure 5.5. Four equiprobable simulations of DEM error. 
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5.2.3 Analysis of DEM uncertainty on the e-SOTER physiographic units 

Figures 5.6 to 5.9 show the results of the uncertainty propagation analysis for the four LFAs. The 

LFAs  with the largest differences between the dominant and the default LFA class are ‘flatness’ and 

‘slope’. Although the dominant and default class for ‘flatness’ correspond for 90% of the pilot area, 

the default flat area is much larger than the dominant flat area. Figure 5.10 (left plot) shows a detail 

of the low-relief area in the north-western part of the pilot area and provides an explanation for this 

difference. The part of the pilot that is designated as ‘flat’ in the default map and as ‘non-flat’ in de 

dominant map corresponds to the northern part of the study area for which the relief is somewhat 

more pronounced. The simulated error adds extra relief to the SRTM DEM. This has the largest effect 

on the northern part of the study area and makes that this area cannot be classified as flat anymore. 

Not surprisingly, the entropy map shows that the transition zone from relatively low to relatively 

high areas, indicated by the green colours in Figure 5.10 (left plot), has the largest uncertainty about 

the prevailing flatness class.  

The default and dominant slope class map correspond for only 51%. The area with slope class 2 on 

the dominant map is almost five times larger than the area on the default map (class 1 equals a 

slope between 0 and 2%, class 2 between 2 and 5%). Again the explanation for this difference is the 

extra relief added to the SRTM DEM by the simulated error. The eastern and south-western parts of 

the pilot area are most affected by DEM uncertainty. These parts are the relatively high parts with 

the most rugged terrain (Figures 5.1 and 5.2). The range of simulated DEM errors in this part of the 

pilot area is larger than for the flatter parts (Figure 5.5). An increase in relief in this area  by adding a 

simulated error field to the DEM will therefore have a larger effect on slope than in the flatter areas. 

Furthermore, a large part of the more rugged terrain has a slope between 1 and 2%, which 

corresponds to the upper half of slope class 1 (Figure 5.10, right plot). An increase in slope therefore 

results in a change in slope class more quickly than in parts with smaller slope percentages. The 

confusion between slope classes is largest around the boundary between the classes as indicated by 

the entropy map. In addition, relatively large entropy values are found in two small areas with 

somewhat less rugged terrain in the eastern part of the pilot area and in a small area with somewhat 

more rugged terrain in the large flat area. 

For LFAs ‘relief intensity’ and ‘hypsometry’ DEM error has little effect on the outcome LFA class. For 

relief intensity the default and dominant maps correspond for 100% of the area, for hypsometry this 

is 96%. The entropy for relief intensity is 0 for  almost the complete pilot area which means that 

there is no uncertainty about the prevailing class. For hypsometry the uncertainty about the 

prevailing elevation class is largest around the class boundaries. 

When considering all four LFAs together then the correspondence between default output of the e-

SOTER procedure and dominant  output of the procedure on basis of simulations is 39%. Leaving LFA 

‘slope’ out of this comparison then the correspondence is 86%. 
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Figure 5.6. Results error propagation analysis for LFA ‘Flatness’. 

 

 
Figure 5.7. Results error propagation analysis for LFA ‘Slope’. 
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Figure 5.8. Results error propagation analysis for LFA ‘Relief intensity’. 

 

 
Figure 5.9. Results error propagation analysis for LFA ‘Hypsometry’. 
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Figure 5.10. Detail of the SRTM DEM of the WE pilot area, highlighting elevation differences in the north-

western part of the area (left) and the slope map derived from the SRTM DEM (right). 

 

5.3  Application to Central European pilot area  

 

5.3.1 Ground control points and DEM error 

Like for the WE pilot, field measured ground control points were not available to quantify DEM error. 

Again we used a more accurate local DEM to obtain the ‘true’ elevation at sampling points. For the 

Czech part of the pilot area a 1:25,000 topographical map was sampled at 330 locations. For the 

German part a DTM with 25-m resolution (DGM25; vertical accuracy ±1-5 m) was randomly sampled 

at 5,000 locations. Of these 500 locations were randomly selected to achieve a sampling density 

comparable to that of the Czech part of the pilot area. Thus in total 830 control points were used for 

DEM uncertainty analysis in the CE pilot area. Figure 5.11 shows the SRTM DEM of the CE pilot area, 

the location of the control points and the DEM error at these points. The mean error is -2 m, the 

variance 242 m2. The minimum and maximum absolute errors are -207  and 79 m. Figure 5.12 (left 

plot) shows a ruggedness map based on a 3 x 3 kernel. Like for the WE pilot the 3 x 3 kernel 

ruggedness map had the strongest correlation with DEM error (r = 0.638) and was therefore used to 

compute the standardized error       . Figure 5.12 (right plot) shows the scatterplot of the 

ruggedness against the absolute DEM error. This plot clearly shows an increasing variation in 

absolute error when the ruggedness increases, indicating that the assumption of constant variance 

of the error that underlies geostatistical modelling is indeed unlikely to be valid. 
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Figure 5.11. SRTM DEM with the location of the control points (left) and the DEM error at these points (right). 

 

Figure 5.12. Ruggedness map created with a 3 x 3 cell kernel (left) and correlation between 3 x 3 kernel 

ruggedness and be absolute DEM error (right). 

 

5.3.2 Modelling DEM uncertainty  

 

Figure 5.13 shows the histogram and boxplot of the standardized error. Both plots show that the 

standardized errors approximately follow the normal distribution (for both countries separate and 

together). There are two outliers with absolute standardized errors of 23 and 63 m. These points 

were excluded from the dataset for semivariogram modelling. The experimental semivariogram was 

computed from the standardized errors at the control points. A theoretical semivariogram model 

was fitted from the experimental semivariogram with an exponential structure, a nugget of 3.19 m2, 

a partial sill of 2.67 m2 and a range of 1,121 m (Figure 5.14). The semivariogram and standardized 

errors at the control points were used to generate 1,000 Monte Carlo simulations of DEM error of 

which Figure 5.15 shows four examples. 
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Figure 5.13. Histogram and boxplot of the standardized DEM error. 

 

 
Figure 5.14. Experimental semivariogram of the standardized DEM error at the control points (dots) and fitted 

semivariogram model (line). 

 

 

Figure 5.15. Four equiprobable simulations of DEM error. 
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5.2.3 Analysis of DEM uncertainty on the e-SOTER physiographic units 

Figures 5.16 to 5.19 show the results of the uncertainty propagation analysis for the four LFAs. The 

LFAs  with the largest differences between the dominant and the default LFA class are ‘slope’ and 

‘relief intensity’.  

The default and dominant slope class map correspond for only 51%. In general the dominant map 

shows steeper slopes than the default map. The simulated errors (Figure 5.15) can be enhancing 

elevation differences substantially and thus steepening the slopes. 80% of the area with slope class 2 

on the default map has slope class 3 on the dominant map. This change mainly occurred along the 

northern border. In the central part of the pilot area with the highest elevations (Figure 5.11) and 

steepest slopes (Figure 5.20) similar changes are observed. Here a similar shift in slope classes is 

observed.  For slope class 3 the correspondence between the two maps is 61%. 17% of the default 

area with class 3 has class 4 as the dominant class and 21% has class 5 as the dominant class. For the 

default slope class 4 a trend is observed. 78% of the default area has class 5 as the dominant class on 

basis of the simulations. Although the dominant map gives a different representation of the slope 

classes in the pilot area than the default map, the spatial patterns in this map do seem be plausible 

when visually compared to the slope base map derived from the SRTM DEM (Figure 5.20). Based on 

a visual assessment one might even argue that the dominant map gives a better representation of 

slope than the default map. For example, slope class 5 on the dominant map better seems to 

represent the extent of the steep areas (orange- and brown-coloured areas in Figure 5.20) than the 

default map. Like in the WE pilot confusion between slope classes mainly concentrates around the 

class boundaries. In addition relatively large entropy values are found in parts with somewhat less 

rugged terrain such as along the northern border and south of the central mountain ridge. 

For LFAs ‘relief intensity’ the default and dominant maps correspond for 44% of the area. Only 30% 

of RI class 1 on the default map is depicted as class 1 on the dominant map. 68% is depicted as 

class 2. On the dominant map class 1 is limited to the river valleys along the northern border and the 

relatively flat basin-like areas south of the central mountain ridge. The area with class 3 is 3.5 times 

larger in the dominant map at the expense of class 2 and roughly follow the central and south-

central high-elevation areas with the most rugged terrain (Figures 5.11 and 5.12). Like for slope, 

DEM error adds ‘extra’ relief to the DEM and because simulated errors can be quite substantial this 

can result in a change in RI class when the uncertain DEMs are used in the e-SOTER procedure. 

Especially so because the RI range of classes 1 and 2 is only 50 m, which is quite narrow given the 

relatively rugged terrain in the CE pilot area. Furthermore, the range of the semivariogram is 

relatively short which inducing spatial variation at relatively short distances when used for 

geostatistical simulations. This also attributes to an increased relief intensity for the simulated DEMs 

(to determine the relief intensity a search radius with a 990 m diameter is used (Dobos et al., 2005)). 

Again the areas with large entropy follow the contours of the class boundaries. 

For LFAs ‘flatness and ‘hypsometry’ DEM error has little effect on the outcome LFA class. For flatness 

the default and dominant maps correspond for 100% of the area, for hypsometry this is 96%. When 

considering all four LFAs together then the correspondence between default output of the e-SOTER 

procedure and dominant  output of the procedure on basis of simulations is 28%. 
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Figure 5.16. Results error propagation analysis for LFA ‘Flatness’. 

 Figure 5.17. Results error propagation analysis for LFA ‘slope’. 
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Figure 5.18. Results error propagation analysis for LFA ‘Relief intensity’. 

 

Figure 5.19. Results error propagation analysis for LFA ‘Hypsometry’. 
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Figure 5.20. Slope map of the CE pilot area as derived from the original 90-m SRTM DEM. 
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6. Validation of the WP3 landform map 

 

6.1  Methodology 

In work package 3 (WP3) state-of-the-art methods for DEM analysis and soil and parent material 

mapping were developed to derive digital equivalents of the SOTER units for the 1:250 000 scale 

pilot areas. For validation we focused on the resulting landform maps since these were the only 

products that were available by early 2012. These maps were derived by hillshed analysis and the 

object-oriented approach (see Deliverable 3.1).  

Validation of the WP1 landform map involved an assessment of the effect of the various aggregation 

and generalization steps in the e-SOTER procedure on the output (section 3.1). This is a 

methodological validation which cannot be directly applied to the WP3 landform maps since these 

were created with different methods. Therefore, validation of the WP3 maps focused on their ability 

to predict the spatial distribution of WRB soil groups. The hypothesis behind this assessment was 

that the WP3 maps are better able to predict the soil spatial distribution than the WP1 map since 

the WP3 maps were created with more advanced methods and at a higher level of detail. It is 

therefore expected that the WP3 landform units are more homogeneous in terms of soil variation 

than the WP1 landform units (the underlying assumption here is that soil can be predicted from 

terrain attributes or landforms).  

Because validation involves two categorical variables (landform type and soil group) we require 

statistical measures that test whether there is a relationship between the two variables, and, if yes, 

how strong this relationship is. A well-known test is the Pearson’s chi-square (χ2) test of 

independence, which is based on analysis of the contingency table or cross tabulation (Table 3.1) 

(Ott and Longnecker, 2001). The null hypothesis of the χ2-test is independence. This means that any 

perceived dependence in a contingency table is attributed to chance. (We only have a sample of the 

population; the apparent dependence may be the result of random variation). From the contingency 

table the χ2-statistic is computed. Under the assumption that the null hypothesis (i.e. no 

relationship) is true, this statistic follows a χ2-distribution with degrees of freedom equal to the 

number of landform classes minus one and the number of soil group classes minus one. By 

comparing the statistic to the χ2-distribution a p-value can be computed on the basis of which the 

null hypothesis is rejected or accepted.  

The χ2-test only tells us if there is an association between the two variables. It does not quantify the 

strength of the association. To assess the strength of an association Ott and Longnecker (2001) 

propose to use Goodman & Kruskal’s lambda (λ), which is a measure of predictability. The rationale 

behind this measure is that the stronger the relationship between the two variables (in our case 

landform and soil group), the better one variable can be predicted from the other. Goodman & 

Kruskal’s lambda is calculated as: 
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In the context of predicting soil with landform units, e1 is the number of errors one makes when 

there is no information about landform. In this case one predicts the most common observed soil 

group (the mode) in the dataset at any location; e1 thus equals the total number of observations in 

the dataset minus the frequency of the mode. e2 is the number of errors one makes when using 

landform unit as predictor of soil group and is computed as follows. For each landform unit the most 

common observed soil group (the mode) is used to predict the soil at any location within the 

landform unit. Next for each landform unit the number of errors (i.e. wrong predictions) is 

determined. This equals the total number of soil observations minus the landform unit mode. 

Finally, the total number of prediction errors is determined for the landform map. A value λ=0.05 

means that 5% fewer errors are made when a landform map is used for prediction compared to use 

of the modal soil group as predictor, i.e. λ is the proportionate reduction in errors. The λ measure 

can also be used to compare the predictive capabilities of two landform maps. In that case e1 is the 

number of errors one makes when predicting soil group with the WP1 landform map and e2 is the 

number of errors one makes when predicting soil group with the WP3 landform map. 

In addition to predictability we computed the entropy for each landform unit (Equation  5.4;  with 

base equal to the number of soil groups, such that the entropy is always a value between 0 (perfect 

association) and 1 (no association)). The global entropy was then computed as a weighted mean of 

the landform unit entropies with weights based on the number of soil sampling sites within each 

unit. Finally, we also computed the overall purity, that is the areal proportion for which the soil 

group is correctly predicted by the dominant soil groups of the landform units. 

The WP3 maps were validated for the UK part of the western European window with soil data from 

2,180 sampling sites (Figure 4.2, top). For the UK two WP3 terrain maps were available: one created 

with the object-oriented approach and one created with hillshed analysis. The landform 

classification system used for both methods is the hierarchical Hammond’s landform classification 

(see Deliverable D3.1). The object-oriented map has three legend levels: code (4 entries), class (9) 

and subclass (18). In addition to these levels with 3, 5, and 7 entries, respectively, the hillshed map 

has a fourth level that combines subclass with slope position (21 entries). The WP1 map has 21 

unique combinations of the four landform attributes (see also chapter 3). 

 

6.2  Results 

Table 6.1 shows the contingency tables of landform unit and WRB soil group for the WP1 map, 

Table 6.2 for the slope and hypsometry attributes of the WP1 map, Table 6.2 for the WP3 object 

map and Table 6.3 for the WP3 hillshed maps. The table entries are the percentage of observations 

of each soil group within a landform unit (i.e. the percentages are conditioned on the row totals).  

For WP1 most landform units are dominated by either Cambisols or Hydromorphic soils (Table 6.1). 

Luvisols dominate two units. These three soil groups make up 86% of the UK soil dataset. Other soil 

groups cover only minor parts of the landform units and are never the dominant soil. Hydromorphic 

soils dominate the relatively flat areas (slope class 1; 46%) followed by Cambisols (22.5%). The gently 

sloping areas are also dominated by Hydromorphic soils (32%), closely followed by Cambisols (31%). 

In areas with moderate slope (class 3) Cambisols dominate (32%), closely followed by Luvisols (31%). 
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Generally, soil distribution shifts from Hydromorphic soils and Cambisols to Cambisols and Luvisols 

with increasing slope class.  

For hypsometry we observe a similar trend. Hydromorphic soils dominate areas with low elevation 

while higher areas are dominated by Cambisols, although Luvisols and Hydromorphic soils are also 

frequently found. Not surprisingly, the area within a landform unit that is covered with the shallow 

leptosols increases with increasing slope and hypsometry class.  

Considering slope and hypsometry together, Hydromorphic soils typically dominate areas with low 

elevation (hypsometry classes 1,2)  and relatively flat areas (slope class 1) while Cambisols dominate 

the high, flat areas. In gently sloping (slope class 2) and moderately sloping (class 3) terrain, 

Cambisols typically dominate the high areas,  while Hydromorphic soils dominate the low areas. 

Luvisols are the dominant soil group in two landform units. 

 

Table 6.1. Contingency table of WP1 landform unit and WRB soil group. The table shows percentages that are 

conditioned on the number of observations within each landform unit. The row totals indicates the number of 

soil observations within the landform unit, the column totals the number of soil observations. The mode, i.e. 

most common soil group, of the unit is indicated in bold type. 

Landform
a 

 WRB reference soil group Total 

 
anthrosol arenosol cambisol histosol hydromorphic leptosol luvisol podzol regosol 

 
0111 0.6 1.1 16.2 2.8 67 0.6 7.3 1.7 2.8 179 

1111 0 0 4.1 13.5 78.4 0 1.4 1.4 1.4 74 

1112 0 0 0 0 50 0 50 0 0 2 

0112 2.4 10.9 25.5 0.8 34.8 0.8 20.2 1.9 2.7 376 

1113 0 0 100 0 0 0 0 0 0 1 

0113 0.9 8.3 35.2 0.9 27.8 0 26.9 0 0 108 

0114 0 0 0 0 100 0 0 0 0 2 

0212 1.1 5.6 17.4 0 44.4 1.1 25.8 3.9 0.6 178 

0213 0.3 2.9 33.2 0.3 30.1 3.2 23.4 2.6 3.9 585 

0214 0 1.2 33.1 0.2 30.2 8 23.1 0.7 3.4 411 

0312 0 4.8 9.5 4.8 57.1 0 23.8 0 0 21 

0322 0 0 50 0 50 0 0 0 0 4 

0313 0 0 33.3 0 30.8 5.1 25.6 5.1 0 39 

0323 0 8.3 25 0 0 25 41.7 0 0 12 

0324 0 4.4 40 0 11.1 6.7 35.6 0 2.2 45 

0314 0 0.9 31.3 0 16.5 13.9 34.8 2.6 0 115 

0315 0 0 50 0 0 33.3 16.7 0 0 6 

0325 0 0 46.7 0 26.7 13.3 13.3 0 0 15 

0326 0 0 0 0 100 0 0 0 0 2 

0423 0 0 100 0 0 0 0 0 0 2 

0424 0 0 66.7 0 0 33.3 0 0 0 3 

Total 15 89 616 23 777 87 477 41 55 2180 
a 

The four digits indicate the flatness class, slope class, relief intensity class and hypsometry class. The landform units are  
ordered by slope and then by hypsometry. 
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Table 6.2. Contingency table of WP1 landform unit and the WP1 landform attributes slope and hypsometry. 
The table shows percentages that are conditioned on the number of observations within each landform unit. 
The row totals indicates the number of soil observations within the landform unit, the column totals the 
number of soil observations. The mode, i.e. most common soil group, of the LFA class is indicated in bold type. 

LFA WRB reference soil group Total 

 anthrosol arenosol cambisol histosol hydromorphic leptosol luvisol podzol regosol  

Slope           

1 1.5 7 22.5 2.6 46.1 0.5 16.2 1.5 2.2 742 

2 0.3 2.7 30.7 0.3 32.3 4.6 23.7 2.1 3.2 1174 

3 0 1.9 32.4 0.4 21.6 10.8 30.5 1.9 0.4 259 

4 0 0 80 0 0 20 0 0 0 5 

           

Hyps.           

1 0.4 0.8 12.6 5.9 70.4 0.4 5.5 1.6 2.4 253 

2 1.9 9 22.5 0.7 38.7 0.9 22 2.4 1.9 581 

3 0.4 3.6 33.6 0.4 29.2 3.2 24.2 2.3 3.1 747 

4 0 1.4 33.3 0.2 26 9.2 26.2 1 2.6 576 

5 0 0 47.6 0 19 19 14.3 0 0 21 

6 0 0 0 0 100 0 0 0 0 2 

Total 15 89 616 23 777 87 477 41 55 2180 

 
 

Results for the WP3 object-oriented approach (Table 6.3) show similar relationships between 

landform unit and soil group as the WP1 approach. Hydromorphic soils dominate the low-lying, 

relatively flat areas (A*a; see Appendix 2). Cambisols dominate gently sloping areas of the plains 

(PLA) and the more undulating parts of plains with high hills (PHH). The WP3 object landform units 

seem somewhat better able to identify Luvisols. These are the dominant soils in four, however 

minor, landform units. Again the area covered with leptosols increases as the ruggedness of the 

terrain increases (A4b, B4a, B4b). 

The WP3-hillshed approach shows relationships between landform unit and soil group that are 

similar to the WP3 object and WP1 approaches. Hydromorphic soils clearly dominate the flat areas 

(A*a). These soils cover between 70 and 85% of the landform units. The hillshed approach seems to 

capture the Hydromorphic soils better than the object-oriented approach. Cambisols dominate the 

higher, upslope parts of the plains with hills and mountains (PHM) and the tablelands with 

considerable relief (TCR) although Luvisols and Hydromorphic soils also cover substantial parts of the 

landform units dominated by Cambisols. Luvisols dominate only three minor landform units. Again 

the area covered with leptosols increases as terrain ruggedness increases which is clearly shown for 

the tablelands units. 
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Table 6.3. Contingency table of WP3 landform unit created with the object-oriented approach and WRB soil 

group. The table shows percentages that are conditioned on the number of observations within each landform 

unit. The row totals indicates the number of soil observations within the landform unit, the column totals the 

number of soil observations. The mode, i.e. most common soil group, of the unit is indicated in bold type. 

Colors indicate the hierarchical legend entries of the landform classification system. 

Landform WRB reference soil group Total 

Code
a
 Class  Subclass AN AR CM HS HY LP LV PZ RG  

PLA PF A1a 0.7 0 3.3 8.6 82.9 0 2.6 0.7 1.3 152 

PLA PSL A2a 1 7.4 24.8 1 39.9 0.7 18.5 2.7 4 298 

PLA PSL A2b 1.1 8.1 33.1 0.4 33.1 0.4 20.8 1.4 1.8 284 

PLA PSL A2c 3.2 14.4 35.2 1.6 22.4 0.8 19.2 1.6 1.6 125 

PHM PH A3a 0.8 2.5 26.6 0.6 33 4.1 26 3.7 2.7 485 

PHM PH A3b 0 6.1 16.3 0 30.6 2 44.9 0 0 49 

PHM PHH A4a 0 2.9 26.1 0 47.8 1.4 18.1 1.4 2.2 138 

PHM PHH A4b 0 2.5 22.2 0 19.8 7.4 43.2 0 4.9 81 

PHM PHH B4a 0 1.9 33.5 0 19.3 15.5 28 1.9 0 161 

PHM PHH B4b 0 1.4 40.8 0 9.9 23.9 22.5 0 1.4 71 

PHM PLM A5a 0 0 39.5 0.7 39.5 1.3 13.8 0.7 4.6 152 

PHM PLM B5a 0 0 21.7 0 43.5 4.3 21.7 8.7 0 23 

TAB TMR A3c 0 2.1 27.1 0 35.4 4.2 31.2 0 0 48 

TAB TCR A4c 0 0 42.9 0 31 6 14.3 0 6 84 

TAB TCR B4c 0 0 40 0 0 0 53.3 0 6.7 15 

OPM OHH C4a 0 0 0 0 100 0 0 0 0 1 

OPM OHH C4b 0 0 22.2 0 11.1 22.2 44.4 0 0 9 

OPM OLM C5a 0 0 75 0 0 0 25 0 0 4 

Total   15 89 616 23 777 87 477 41 55 2180 
a 

Appendix 2 gives a description of the landform classification levels of the WP3 maps. 

 
 

Table 6.5 shows the validation measures. The χ2-statistic shows that for each landform map there is 

very strong evidence that soil group depends on the landform unit and that the evidence increases 

with a more detailed classification legend. The predictability λ shows that predicting soil with 

landform all maps give better results than simply predicting the most common (modal) soil class 

(Hydromorphic soils, n=777; the default method) at each location. Using the WP1 map for predicting 

soil 6.3% fewer errors are made than predicting with the modal soil class. For WP3-object this is 

7.9% for the most detailed classification level and for WP3-hillshed it is 9.1%.  

The WP3 object-oriented approach differentiates soils less well than the WP1 map at the code and 

class levels. More errors are made when predicting soil (negative values for λ-WP1) , there is more 

confusion within the landform units (entropy is larger) and the purity is smaller. Only at subclass 

level, for which the number of landform units is comparable to the number of landform units 

distinguished on the WP1 map, the WP3 object oriented approach performs somewhat better than 

the WP1 approach. 
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The WP3 hillshed approach predicts the spatial distribution of WRB soil groups as well as the WP1 

approach at the code, class and subclass levels. Only the entropy is somewhat larger. The results at 

code level are especially striking since only three landform units are distinguished (plains with hills 

and mountains, tablelands, open hill and mountains) that differentiate soils as well as the 21 units of 

the WP1 map. At the subclass-slope level the WP3 hillshed method predicts the spatial distribution 

of soils better than the WP1 map: 3.4% fewer errors are made and the purity is 2% larger. Only the 

entropy is similar. This means that there is a similar amount of confusion within the landform units.  

Summarizing, validation of the WP3 landform maps based on predictability of the WRB reference 

soil groups indicates that the hillshed analysis gives the best overall results. Both the hillshed and 

object-oriented approach give better results than the WP1 map at subclass level, although 

differences in predictability and purity are modest. The entropy is equal for all three maps, indicating 

that the WP3 landform units are not internally more homogeneous with respect  to soil distribution 

than the WP1 units.  

Table 6.4. Contingency table of WP3 landform unit created with hill shed analysis and WRB soil group. The 

table shows percentages that are conditioned on the number of observations within each landform unit. The 

row totals indicates the number of soil observations within the landform unit, the column totals the number of 

soil observations. The mode, i.e. most common soil group, of the unit is indicated in bold type. Colors indicate 

the hierarchical legend entries of the landform classification system. 

Landform WRB reference soil group Total 

Code
a
 Class Subclass Subclass_slope AN AR CM HS HY LP LV PZ RG 

 
PHM PH A3a A3a_lower 0.8 0 9.3 6.2 72.1 0 7.8 2.3 1.6 129 

PHM PH A3a A3a_mid 0 1.9 12.5 5.8 71.2 1 5.8 0 1.9 104 

PHM PH A3a A3a_upper 4.3 0 8.7 0 82.6 0 0 0 4.3 23 

PHM PH A3b A3b_lower 1.9 7.2 19.8 1.9 42 1 19.8 2.9 3.4 207 

PHM PH A3b A3b_mid 1.7 13.1 26.9 0.6 34.3 1.1 18.9 2.3 1.1 175 

PHM PH A3b A3b_upper 0 10 17.1 0 38.6 0 28.6 4.3 1.4 70 

PHM PHH A4b A4b_lower 0 2.9 25.1 1.4 43 1.1 20.1 2.2 4.3 279 

PHM PHH A4b A4b_mid 1.2 4.1 32.2 0 27.2 3.8 26.4 1.4 3.8 345 

PHM PHH A4b A4b_upper 1.9 2.9 42.7 0 26.2 0 23.3 1 1.9 103 

TAB TCR A4c A4c_lower 0 1.9 38.7 0 29.2 5.7 17 1.9 5.7 106 

TAB TCR A4c A4c_mid 0 1.5 35.4 0 30.8 7.3 23.1 0.4 1.5 260 

TAB TCR A4c A4c_upper 0 2 32.3 0 21.2 7.1 33.3 4 0 99 

TAB TCR B4c B4c_lower 0 2.8 38.9 0 27.8 11.1 19.4 0 0 36 

TAB TCR B4c B4c_mid 0 2.9 37.5 0 8.7 12.5 36.5 0 1.9 104 

TAB TCR B4c B4c_upper 0 3.8 33.3 0 24.4 5.1 28.2 5.1 0 78 

TAB THR B5c B5c_lower 0 0 0 0 100 0 0 0 0 1 

TAB THR B5c B5c_mid 0 0 42.9 0 14.3 28.6 14.3 0 0 7 

TAB THR B5c B5c_upper 0 0 25 0 25 0 25 0 25 4 

OPM OLM C5c C5c_lower 0 33.3 66.7 0 0 0 0 0 0 3 

OPM OLM C5c C5c_mid 0 0 34.8 0 8.7 26.1 21.7 8.7 0 23 

OPM OLM C5c C5c_upper 0 4.2 25 0 4.2 20.8 45.8 0 0 24 

Total    15 89 616 23 777 87 477 41 55 2180  
a 

Appendix 2 gives a description of the landform classification levels of the WP3 maps. 
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Table 6.5. Validation measures. 

Landform map No. units λ-WP1
a
 λ-mode

b
 χ 2

 (p) Entropy Purity 

None
c
       

       

WP1 21 - 0.063 619 (<0.000) 0.65 0.397 

       

WP3-object       

Code 4 -0.056 0.011 165 (<0.000) 0.69 0.363 

Class 9 -0.039 0.027 493 (<0.000) 0.66 0.374 

Subclass 18 0.167 0.079 703 (<0.000) 0.64 0.407 

       

WP3-hill shed       

Code 3 -0.001 0.063 207 (<0.000) 0.69 0.397 

Class 5 -0.001 0.063 307 (<0.000) 0.68 0.397 

Subclass 7 -0.001 0.063 464 (<0.000) 0.67 0.397 

Subclass_slope 21 0.034 0.091 628 (<0.000) 0.65 0.416 
a
 Proportionate reduction in errors compared to the WP1 map ([WP1-WP3]/WP1). Negative numbers indicate better 

prediction by the WP1 map. 
b
 Proportionate reduction in errors compared to predicting the modal soil class  ([mode-WP3]/modal), which are the 

Hydromorphic soils.  
c
 Predicting the dominant observed soil group (Hydromorphic soils, n=777) at each location. 

 

This does not mean, however, that the merit of using more advanced methods for landform 

classification is limited. The ability to predict soil is only one aspect of landform classification. For 

example, a visual inspection of landform units shows that the WP1 landform map captures the major 

variation in terrain in the UK area of the western European window although delineations are quite 

crude (Fig 6.1, top). The WP3-object map shows a much more detailed delineation of the landscape 

(Fig 6.2, bottom) than the WP1 map. We therefore expect that the landform units of the WP3 maps 

are more homogeneous in terms of landform attributes than the WP1 map.  

The three dominant soil groups in the UK, the Hydromorphic soils, Cambisols and Luvisols, can occur 

under a great variety of conditions and are not typical or unique for certain landform units. This 

explains that these three soils cover considerable areas within almost all landform units, although 

the dominant soil group may differ. Furthermore, we have seen in section 4.2.2 that the correlation 

between the soil classification system for England and Wales and WRB is not error-free and that 

there is considerable confusion between the three dominant soil groups.  

Finally, parent material, another important soil forming factor in addition to terrain, is not 

considered here. We expect that the more detailed delineations of the landform units will result in a 

more detailed differentiation of parent materials. This might improve predictability of the soil 

groups. For example, Podzols and Arenosols (sand) and Histosols (organic) might be better 

differentiated from the other soil groups. 
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Figure 6.1. Landform classification based on the SRTM DEM by the WP1 procedure (top) and WP3-object 
oriented approach (bottom) for the central UK area.  



Report Deliverable No D10  e-SOTER 

 

70 

 

7. Conclusions and recommendations 

 

Landform validation 

 Validation generally shows large purities for both the Western (WE) and Central European 

(CE) windows. This means that the negative effect of the generalization steps in the e-SOTER 

landform classification procedure developed in WP1 on the mapped landform attributes is 

limited.  

 Validation results are comparable for WE and CE windows.  

 Slope is the landform attribute (LFA) that is most affected by the generalization steps. 

Overall purity of slope for WE is 45% and for CE 51%. Map units purities and class 

representations roughly vary between 20 and 80%. The fact that slope is the most heavily 

affected can be explained by the fragmented appearance of slope classes at 90-m resolution. 

Slope classes are clustered in small ‘islands’. Generalizing such a fragmented map induces 

more errors in the outcome than generalizing a 90-m LFA map with spatially more 

contiguous classes. 

 Based on the validation results for slope — relatively low purities and large variation within 

mapped slope classes — we conclude that a slope legend with seven entries might be too 

detailed for use at scale 1:1M. To reduce the effect of generalization steps and to improve 

the representation of slope classes we suggest to develop a slope legend with fewer and 

more broadly defined classes. 

 Hypsometry is the least affected LFA. Overall purity, map unit purities and class 

representations generally vary between 70 and 90%. These results can be explained by the 

fact that elevation classes cover relatively large, contiguous areas so that the effect of the 

generalization steps on the outcome classes is small. 

 Relief is an important factor that determines the effect of the generalization steps on the PU 

map. The WE map (less pronounced relief, larger contiguous flat areas) better represents 

the flat areas than the CE map, while the latter (more pronounced relief, larger contiguous 

RI classes) better represents relief intensity. 

 

Soil validation 

 The 51% purity for the UK validation area, based on validation of the dominant soil group of 

a soil component, is fairly large, especially for a map created with digital soil mapping 

methods. The e-SOTER soil map shows the general soil spatial patterns, which is the purpose 

of a 1:1M soil map.  

 Despite an acceptable validation result, Figure 4.1 clearly shows large differences between 

the 1:1M e-SOTER map and the 1:250,000 soil map of England and Wales. Important error 

sources in the UK area are the over-representation of Histosols and Podzols on the e-SOTER 

map and the absence of Leptsols as dominant soil group. We recommend to focus on these 

groups to improve soil mapping. A more ‘local’ calibration of the soil predictive relationships 

derived from remote sensing images might improve mapping. 
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 Overall purity for the German/Czech validation area is a moderate 32%. The difference with 

the UK area can be partly explained by stricter validation criteria. 

 Important error sources in the German/Czech validation area are the under-representation 

of Chernozems and Podzols on the e-SOTER soil map. We therefore recommend to focus on 

these groups to improve soil mapping. Another main error source is the confusion between 

Hydromorphic soils, Cambisols and Luvisols. Improving the spatial representation of these 

soils, however, might be difficult at 1:1M scale since these soils often occur in associations, 

forming complex mosaic soil covers. 

 The stringent and flexible mode represent two ‘extremes’. The stringent case is very strict. 

For interpretation of the e-SOTER soil map, however, soil data users will have to choose a 

soil component from the database to assign to each e-SOTER unit and then the dominant 

soil type is the most logical choice. The flexible case is the other extreme. Overall purity of 

the flexible case is much larger than that of the stringent case but is also less informative 

since the larger the number of soil components associated to an e-SOTER unit the less 

information one has about the actual soil component.  

 Generalizing the soil legend from 17 to 12 entries based on diagnostic properties did not 

improve validation results.  

 The soil maps were validated with legacy soil data obtained by purposive sampling. 

However, when possible we recommend to use validation data obtained by independent 

probability sampling. Only then can unbiased estimates of the map quality measures and 

their standard errors be obtained.  

 

Error propagation analysis 

 In the UK pilot area DEM error has the largest effect on slope class. The dominant slope on 

the basis of 1,000 simulations is typically one class higher than the default classes (classes 

based on the 90-m SRTM DEM). Correspondence between the mapped dominant and 

default classes is 51%. Hypsometry is hardly affected by DEM error. This is because classes 

are wide so that changes in elevation when DEM error is taken into account do not easily 

result in different outcome classes.  

 In the more rugged CE pilot area slope and relief intensity are most affected by DEM error. 

Correspondence between the mapped dominant and default classes is 51% for slope and 

44% for relief intensity. Hypsometry and flatness are hardly affected by DEM error. 

 Generally, in relatively flat areas such as the WE pilot area the flatness attribute is sensitive 

to DEM error while in areas with more intense relief, such as in the CE pilot area, the relief 

intensity attribute is sensitive to errors in the DEM. 

 Uncertainty about the prevailing LFA class, quantified by the entropy, is generally small. The 

largest uncertainties are found in zones along the class boundaries. 

 Taking into account DEM error seems to improve representation of LFA classes, based on a 

visual assessment of the maps with the dominant LFA classes as derived from the 1,000 

simulations and 90-m SRTM DEM derived base maps. 
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Validation of WP3 landform maps 

 Validation of the WP3 landform maps in terms of predictability of the WRB reference soil 

groups indicates that the hillshed analysis gives the best overall results.  

 Both the hillshed and the object-oriented approach give better results than the WP1 map at 

subclass level, although differences in predictability and purity are modest. The entropy is 

equal for all three maps, indicating that the WP3 landform units are not internally more 

homogeneous with respect  to soil distribution than the WP1 units.  

 Validation of the landform maps was only carried out for the UK part of the WE window. 

One should be careful with generalizing these results to other areas. We therefore 

recommend to carry out a similar assessment for other areas with different soilscapes to 

obtain a better insight in the added value of state-of-the-art methods for landform 

classification. 

 We recommend to expand the validation procedure by assessing other aspects of landform 

classification such as an assessment of the variation of landform attributes within the 

landform map units. We expect that the landform units of the WP3 maps are more 

homogeneous in terms of landform attributes than the WP1 map, given the more detailed 

landform delineations compared to the WP1 map as judged from a visual inspection. 

However, independent validation is required to test these expectations. 
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Appendix 1. Site, soil profile and topsoil data of the NSI dataset (UK) 

 

Site data. 

Property Example from data Description 

EAST_NSI 396000 
National Grid reference easting at 5km resolution with 1km offset from 
true grid 

NORTH_NSI 216000 
National Grid reference northing at 5km resolution with 1km offset from 
true grid 

EASTING 396000 National Grid reference easting of the actual location surveyed 

NORTHING 216100 National Grid reference northing of the actual location surveyed 

SURVEYDATE 220182 Date of observation 

SERIES_NAME DIDMARTON 
The name of the soil series, the basic unit of soil taxonomic classification, 
named after the place where they were first described 

VARIANT   
Code to indicate that the profile is a variation of the defined soil series 
classification 

SUBGROUP 5.14 

Number used to define a subgroup incorporating the major group, group 
and subgroup i.e.3.11, being the third level of soil taxonomic classification 
based on features which further define the inherent characteristics of the 
soil material 

LANDUSE 
permanent 
grassland  

Classification of Land use in to 17 classes 

SLOPE 2 Slope in degrees 

SLOPEFORM straight 
Slope form along the direction of the true slope (concaved, straight or 
convexed) 

MADE_GROUND 
Made land - 
Mining  

Identification of sites which have been made or reclaimed by man’s 
influence 

OUTCROP   Proportion of rock outcrops within 100m of the profile 

ALT 750 Altitude (m) above Ordnance Datum (OD) 

ASPECT SSE Compass point (bearing code e.g. NNE) 

EROSION   Classification of surface features formed by erosion of soil material 

DEPOSITION   
Classification of surface features formed by the accumulation of soil 
material 

ROCKTYPE 
calcareous oolitic 
limestone 

Classification of rock based on recent Geological Survey and other 
modern publications 
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Soil profile data. 

Property Example from data Description 

UPPER_DEPTH 15 Horizon upper depth in cm (<0 indicated litter layer) 
LOWER_DEPTH 27 Horizon lower depth in cm (999 implies depth below bottom 

of profile) 
TEXTURE sandy loam  Soil texture class (includes particle size class and peat codes) 
VON_POST   Modified version of the Von Post scale for assessing the 

degree of decomposition of peat 
ESTIMATED_CLAY 17 Clay content (%) estimated in the field 
ESTIMATED_SILT 20 Silt content (%) estimated in the field 
MATRIX_COLOUR 75YR3/2 Colour of soil matrix following the Munsell colour notation 
MOTTLE_ABUND common Abundance of mottles ranging from none to very many 
MOTTLE_SIZE medium Classification of the size of the mottles ranging from 

extremely fine to coarse 
MOTTLE_COLOUR 10YR3/3 Colour of the mottles following the Munsell colour notation 
SUB_MOTTLE_ABUND few Abundance of subsidiary mottles ranging from none to very 

many 
SUB_MOTTLE_SIZE medium Classification of the size of the subsidiary mottles ranging 

from extremely fine to coarse 
SUB_MOTTLE_COLOUR 75YR3/2 Colour of the subsidiary mottles following the Munsell colour 

notation 
STRUCTURE medium 

moderately 
developed 
subangular 

The shape, size and degree of development of the 
aggregation, if any, of the primary soil particles into naturally 
or artificially formed structural units (peds, clods etc) 

STONE_ABUND few  Class of stone abundance (per cent by volume) 
STONE_SIZE medium  Size class by diameter (cm) of stones 
STONE_TYPE sandstone stones Classification of stone based on recent Geological Survey and 

other modern publications 
CARBONATE non-calcareous Calcium Carbonate level of soil estimated in the field  
COATING no coatings Concentrations of clay around voids, mineral grains or peds. 

These are classified by the proportion of the area coated 
using the scale Few (<10%)< Common (10-50%) and Many 
(>50%) 

NODULES   The shape, size, nature and composition of nodules and other 
concretions 

POROSITY very porous Classification based on the percentage of macropores 
(>60um) per unit soil volume 

ROOTS common fine 
woody roots 

The abundance, size and nature of roots 

SOIL_WATER moist Soil water state (DRY, MOIST or WET) 
BOUNDARY sharp irregular 

boundary 
The degree and distinctness of an horizon boundary 
depending partly on the contrast between adjacent horizons 
and partly on the thickness of any transitional zone 
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Topsoil data. 

Property Example from data Description 

pH 6.4 pH of soil  
CARBON 1.6 Organic Carbon (% by weight)  
AL_ACID 16836 Total Aluminium concentration (mg/kg)  
AS_ACID 4 Total Arsenic concentration (mg/kg)  
BA_ACID 89 Total Barium concentration (mg/kg)  
CA_ACID 2541 Total Calcium concentration (mg/kg)  
CD_ACID 0.6 Total Cadmium concentration (mg/kg)  
CD_EDTA 0.2 Extractable Cadmium concentration (mg/l)  
CO_ACID 6.2 Total Cobalt concentration (mg/kg)  
CO_EDTA 0.3 Extractable Cobalt concentration (mg/l)  
CR_ACID 27.3 Total Chromium concentration (mg/kg)  
CU_ACID 20.3 Total Copper concentration (mg/kg)  
CU_EDTA 8.3 Extractable Copper concentration (mg/l)  
F_ACID 44.46 Fluoride extracted with 1mol / l sulphuric acid  
FE_ACID 31096 Total Iron concentration (mg/kg)  
HG_ACID   Total Mercury concentration (mg/kg)  
K_ACID 2210 Total Potassium concentration (mg/kg)  
K_NITRATE 101 Extractable Potassium concentration (mg/l)  
MG_ACID 1703 Total Magnesium concentration (mg/kg)  
MG_NITRATE 55 Extractable Magnesium concentration (mg/l)  
MN_ACID 297 Total Manganese concentration (mg/kg)  
MN_EDTA 27 Extractable Manganese concentration (mg/l)  
MO_ACID 0.67 Total Molybdenum concentration (mg/kg)  
NA_ACID 147 Total Sodium concentration (mg/kg)  
NI_ACID 18.9 Total Nickel concentration (mg/kg)  
NI_EDTA 1 Extractable Nickel concentration (mg/l)  
P_ACID 885 Total Phosphorus concentration (mg/kg)  
P_OLSON 15 Extractable Phosphorus concentration (mg/l) 
PB_ACID 36 Total Lead concentration (mg/kg)  
PB_EDTA 13.8 Extractable Lead concentration (mg/l)  
SE_ACID 0.24 Total Selenium concentration (mg/kg)  
SR_ACID 25 Total Strontium concentration (mg/kg)  
V_ACID 38.34 Total Vanadium concentration (mg/kg)  
ZN_ACID 72 Total Zinc concentration (mg/kg)  
ZN_EDTA 3.1 Extractable Zinc concentration (mg/l)  
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Appendix 2. Landform classification levels of the WP3 maps 

 

Code 
 PHM Plains with hills and mountains 

TAB Table lands 

OPM Open mountains 

  Class 
 PF Flat or nearly flat plains 

PSL Smooth plains with some local relief 

PH Plains with hills 

PHH Plains with high hills 

PLM Plains with low mountains 

TCR Tablelands with moderate relief 

TMR Tablelands with considerable relief 

THR Tablelands with high relief 

OHH Open high hills 

OLM Open low mountains 

  Slope 
 A More than 80% of the area gently sloping 

B 50-80% of the area gently sloping 

C 20-50% of the area gently sloping 

D Less than 20% of the area gently sloping 

  Local relief 
 1 0-30 m 

2 30-91 m 

3 91-152 m 

4 152-305 m 

5 305-915 m 

  Profile type 
 a More than 75% of gentle slope is in lowland 

b 50-75% of gentle slope is in lowland 

c 50-75% of gentle slope is on upland 

d Less than 75% of gentle slope is on upland 

 


