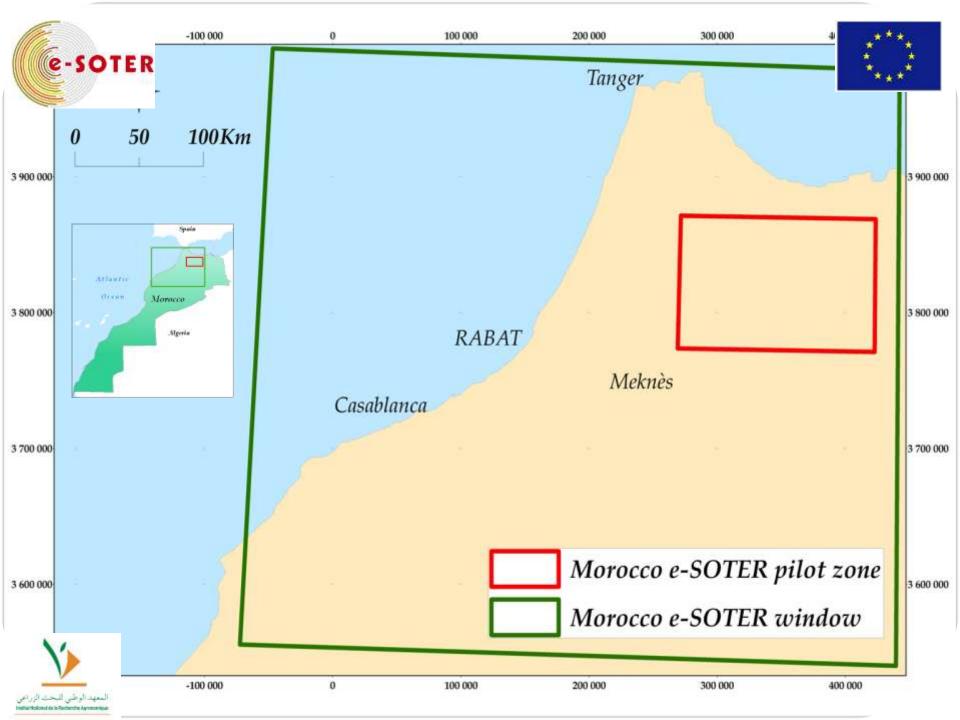


e-SOTER

Regional pilot platform as EU contribution to a Global Soil Observing System

Application of e-SOTER approach in Morocco: opportunities and constraints

INRA-Morocco



Introduction

- As many Mediterranean countries, Morocco has a great diversity in soils formation and development processes
- Unfortunately, according to national statistics, soil maps at various scales cover around 30 % of national territory, the classical approach was used in most cases
- New cost and time effective soil mapping approaches are needed
- e-Soter project was a good opportunity to test a new (non conventional) large and medium scale mapping approach

e-Soter main objectives

- Morphometric landforms description;
- Soil parent material characterization and pattern recognition by remote sensing;
- Standardization of methods and measures of soil attributes to convert legacy data and various national databases to a common standard.

Working program

Input Data compilation & delivery

Moroccan team & project partners

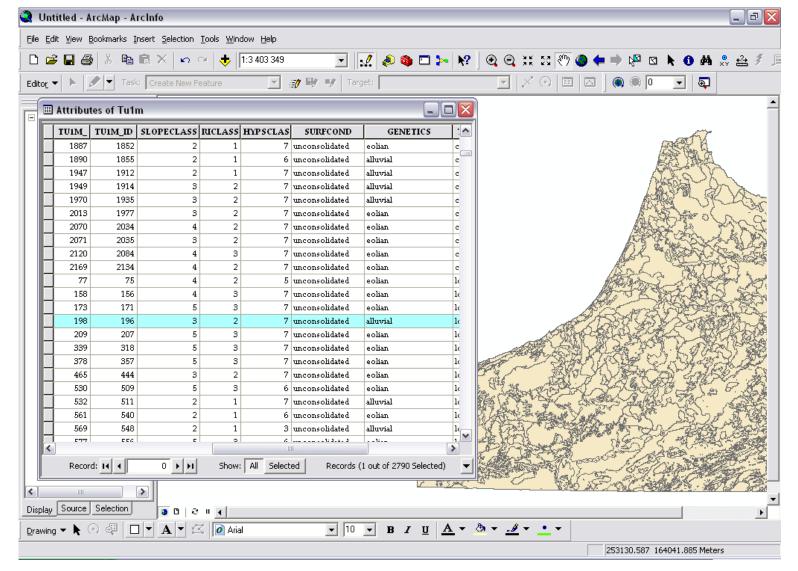
Data processing & GIS modelling

Moroccan team & project partners

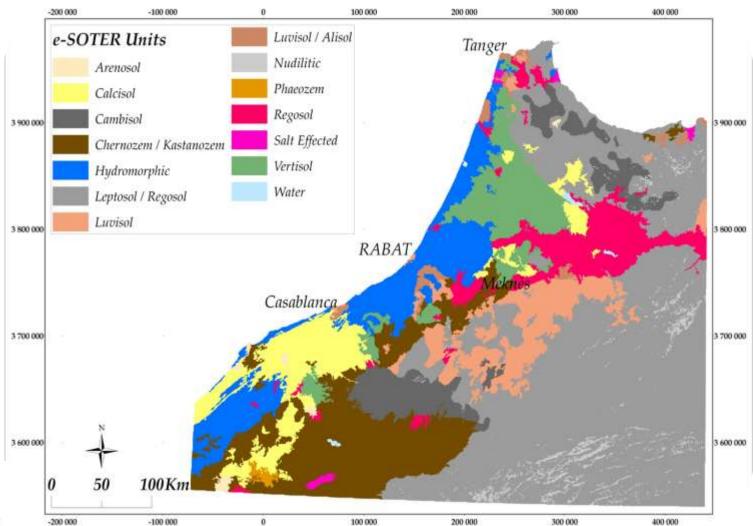
Field verification

Moroccan team & project partners

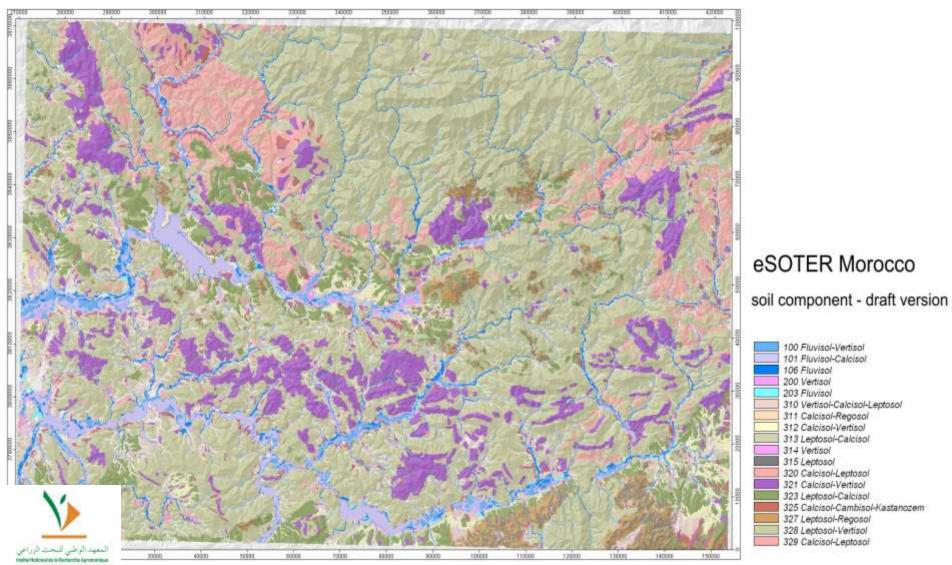
e-Soter main outputs for Morocco case study

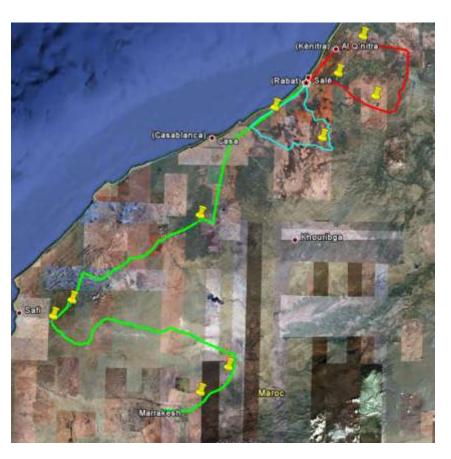

- Geodatabases for morphometric characteristics and parent material at large and medium scale;
- Correlation of available soil attributes from local soil classification (CPCS) to WRB;
- Soil FAO-WRB units of target areas at large and medium scales;
- Conception of a methodology of soil mapping using legacy data, expert-based knowledge and geomatics for further Digital Soil Mapping in the unstudied areas of the country.

Geodatabase of the geomorphometry

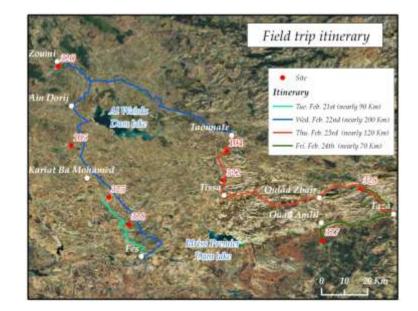


Soil units for the window (1/1.000.000)





Soil units for the pilot area (1/250.000)

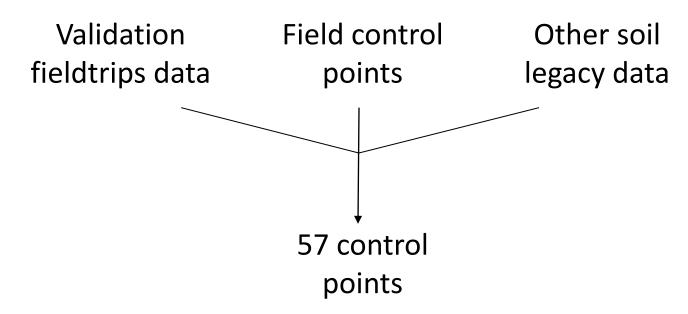


2010, Mai 10th – 14th :Khemisset – Zaer – Gharb – Chaouia – Doukkala & Al-Haouz regions

Learning by dowing

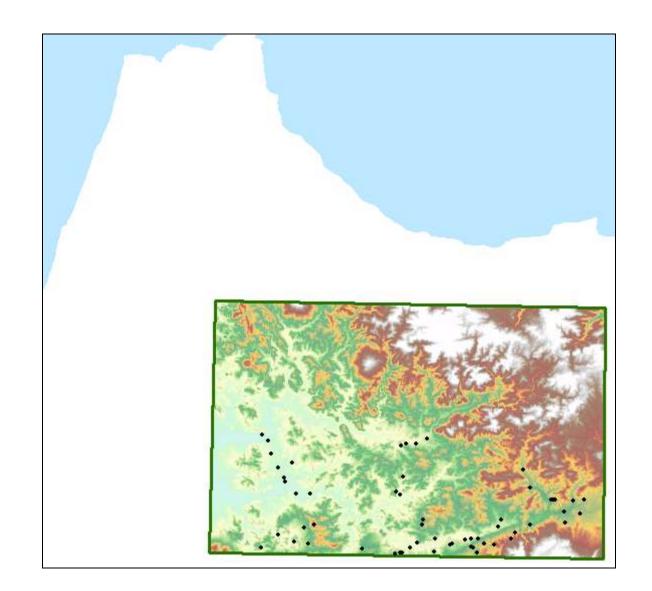
Validation fieldtrip for the 1/1.000.000 product

2011, October 6th – 7th: Fes - Kariat Ba Mohamed & Taza regions



Test to e-Soter methodololy

Correlation between e-Soter units & real terrain data for the pilot area (1/250.000)



Test to e-Soter methodololy

2012, February 21st – 24th: Zoumi - Kariat Ba Mohamed - Taounate & Taza regions

Validation fieldtrip for the 1/250.000 product

Test to e-Soter methodololy

ld	e-Soter unit	Field observation	Accuracy
1	Leptosols - Vertisols	Calcisol	No
2	Calci - Cambisols - Kastanozems	Calcisols	Yes
3	Calcisols - Leptosols	Calcisols	Yes
4	Calcisols - Vertisols	Calcisols	Yes
5	Fluvisols - Calcisols	Calcisols	Yes
6	Vertisols	Calcisols	No
7	Fluvisols	Cambisols	No
8	Fluvisols	Cambisols	No
9	Leptosols - Vertisols	Cambisols	No
10	Calcisols - Leptosols	Cambisols - Fluvisols	No
11	Fluvisols	Cambisols - Fluvisols	Yes
12	Calcisols - Leptosols	Chernozems	No
13	Leptosols	Chernozems	No
14	Vertisols	Chernozems	No
15	Calcisols - Leptosols	Kastanozems	No
16	Fluvisols	Kastanozems	No
17	Vertisols	Kastanozems	No
18	Leptosols - Vertisols	Kastanozems	No
19	Calcisols - Leptosols	Leptosols	Yes
20	Leptosols	Leptosols	Yes
21	Leptosols	Leptosols	Yes
22	Leptosols - Regosols	Leptosols	Yes
23	Leptosols - Regosols	Leptosols	Yes
24	Leptosols - Regosols	Leptosols	Yes
25	Leptosols - Vertisols	Leptosols	Yes
26	Leptosols - Vertisols	Leptosols	Yes
27	Vertisols	Leptosols	No
28	Leptosols	Leptosols	Yes
29	Leptosols	Leptosols	Yes

ld	e-Soter	Field observation	Accuracy
30	Leptosols - Regosols	Leptosols - Calcisols - Luvisols	Yes
31	Fluvisols	Leptosols - Fluvisols	Yes
32	Leptosols - Vertisols	Lepto - Regosols -Phaeozems	No
33	Fluvisols - Vertisols	Luvisols	No
34	Leptosols - Vertisols	Luvisols	No
35	Vertisols	Luvisols	No
36	Vertisols - Calcisols - Leptosols	Luvisols	No
37	Calcis-Cambisols-Kastanozems	Regosols	No
38	Calcisols - Vertisols	Regosols	No
39	Leptosols	Regosols	No
40	Vertisols	Regosols	No
41	Vertisols - Calcisols - Leptosols	Regosols - Cambisols	No
42	Leptosols - Vertisols	Regosols - Phaeozems	No
43	Calci- Cambisols - Kastanozems	Rendzic Regosols	No
44	Calci- Cambisols - Kastanozems	Vertisols	No
45	Calcisols - Leptosols	Vertisols	No
46	Calcisols - Regosols	Vertisols	No
47	Calcisols - Vertisols	Vertisols	Yes
48	Fluvisols	Vertisols	No
49	Fluvisols - Calcisols	Vertisols	No
50	Fluvisols - Vertisols	Vertisols	Yes
51	Vertisols	Vertisols	Yes
52	Vertisols	Vertisols	Yes
53	Calcisols - Vertisols	Vertisols	Yes
54	Vertisols	Vertisols	Yes
55	Vertisols	Vertisols	Yes
56	Vertisols	Vertisols	Yes
57	Vertisols	Vertisols	Yes

Advantages of e-Soter methodololy

Based on the used control points:

- The e-Soter classification for the pilot area was satisfied at 56%;
- The most correlated soil units concern Leptosols and Vertisols then Calcisols;
- The e-Soter methodology is a more accurate medium scale soil mapping methodology if enough field and expert-knowledge data are available.

Limits of the approach

In the Moroccan context, the e-Soter approach presents some limits related to the cartography of some soil formation processes:

- The decarbonatation processes, specific to semi-arid areas;
- Vertisolisation processes / hydrological system;
- Organic matter redistribution processes;
- Add local information about geomorphology / soil distribution (catena/ topo - sequence)

Conclusion

- e-Soter approach remains good as a first step framework for a soil mapping program of the unstudied areas of Morocco (2Mha)
- Great opportunity improving the local team capacity building (young soil scientists) who start collecting soil data for studied areas of Morocco to establish a Soil Database (>7Mha) (climate change, soil erosion and fertility, land suitability projects)

Thank you

Rachid Moussadek moussa.inra@gmail.com