

Regional pilot platform as EU contribution to a Global Soil Observing System

Integration of terrain, parent material and soil information in e-SOTER at scale 1:250.000

Michael Bock

content

- I. Basic procedure
- II. Case study 1: data rich environment Chemnitz (Germany/Czech Rep.)
 - landform
 - parent material
 - terrain
 - soil data situation
 - critical number of sample points
 - cluster analysis
 - e-SOTER Map
- III. Case study 2: data poor environment Fes (Morocco)
 - landform
 - parent material
 - terrain
 - soil data situation
 - further processing and cluster analysis
 - eSOTER draft Map
 - validation trip
- IV. Outlook

I. Basic procedure

II. Case study: data rich environment Chemnitz - landform units: Geomorphographic map (GMK) -

XKXS USXS USIS

USAS

UKXS SMXX SMXS SLXS CXXX CSXX CSXS CSXM CSUI CSIS CSIM CSII CSBX **CSBM** CSBI. CSAS CSAM CSAI CMXX

CLXX CLXS CKXX CKXS CKXM CEXX CEXX

CCXX

CCXI CCPS CCPM

II. Case study: data rich environment Chemnitzparent material units: reclassified Geological map -

zoomed in 1/6th of total pilot

II. Case study: data rich environment Chemnitz
- terrain units: merging GMK with PM = 349 classes –

(first 3 digits landform unit / last 2 parent material)

zoomed in 1/6th of total pilot

- The system picks up on the idea that the combination of landform and parent material information dissects the landscape in a complex manner sufficiently to represent delineations conform with soil-landscape formation
- The legend of the terrain units requires aggregation according to soil content

Profile data with 10 main soil types in pilot Chemnitz (13480 samples)

Analyzing profile data:

Proportions of main soil types in Chemnitz [%]

und Rohstoffe

E-SOTER Analyzing profile data:

Proportions of main soil types in bottom areas [%] | area 2 | USAS (34 samples)

Main soil types in Upper terraces 2 | SLXS (139 samples)

Analysing profile data within terrain units

Reduction of the number of points

Randomly reducing the points down to 15% of the points still leads to the same results. More reducing leads to accidently altering the proportions.

In Chemnitz 2.500 points would have been enough for more than 17.000 km²,

△ 1 point ~ 9km².

terraces (class 21211)

Analyzing profile data:

Differences in main soil types in bottom areas, data preparation for terrain unit aggregation

	RN	RQ	BB	LF	LL	PP	SS	YK	AB	GG	control sum	number of points
10153	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	43,5	-18,2		5
10211	-0,6	-2,6	15,5	-0,2	-8,2	-1,9	-11,8	-10,5	33,5	-18,2		10
10212	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	43,5	-18,2		5
10216	-0,6	-2,6	15,5	-0,2	-8,2	-1,9	28,2	-10,5	-16,5	-18,2		5
10217	-0,6	-2,6	14,4	-0,2	0,2	-1,9	-6,2	11,7	-11,0	-7,1		36
10220	-0,6	-2,6	-24,5	-0,2	11,8	-1,9	-11,8	-10,5	13,5	11,8		10
10224	-0,6	4,5	11,3	-0,2	-8,2	-1,9	-4,7	10,9	1,3	-11,1		28
10228	-0,6	-2,6	4,1	-0,2	-8,2	-1,9	-11,8	-10,5	12,0	10,4		7
10230	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	6,4	7,7	-16,5	27,3		11
10231	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	33,5	-18,2		6
10253	-0,6	3,3	-9,8	-0,2	0,7	-1,9	-3,0	-10,5	15,8	8,3		34
10254	-0,6	-2,6	21,0	-0,2	-8,2	-1,9	24,6	-10,5	-16,5	-18,2		11
10311	-0,6	-2,6	-3,0	-0,2	-1,0	-1,9	13,2	0,2	-2,2	3,2		28
10312	-0,6	-2,6	-24,5	-0,2	11,8	-1,9	1,5	9,5	-16,5	15,1		15
10314	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	50,1	-18,2		3
10316	-0,6	-2,6	-8,7	-0,2	-8,2	29,7	9,3	-10,5	-16,5	8,1		19
10317	-0,6	-2,6	22,0	-0,2	-3,5	-1,9	-11,8	-3,5	-7,2	2,7		43
10320	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	-16,5	21,8		5
10324	-0,6	-2,6	14,8	-0,2	6,1	-1,9	-11,8	3,8	-16,5	6,8		28
10328	-0,6	5,1	-16,8	-0,2	-8,2	-1,9	3,6	4,9	-8,8	20,3		26
10330	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	32,3	-16,5	-18,2		7
10331	-0,6	-2,6	-4,5	-0,2	-8,2	-1,9	-11,8	-10,5	36,8	-18,2		15
10353	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	16,8	-10,5	-16,5	-18,2		7
10411	-0,6	-2,6	10,8	-0,2	3,6	-1,9	5,8	1,2	-4,8	-18,2		17
10412	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	38,2	-10,5	-16,5	-18,2		4
10416	-0,6	-2,6	4,1	-0,2	-8,2	-1,9	-11,8	-10,5	-16,5	10,4		7
10417	-0,6	-2,6	6,3	-0,2	14,9	-1,9	-11,8	12,6	-16,5	-18,2		13
10420	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	-11,8	-10,5	-16,5	15,1		6
10424	-0,6	-2,6	-24,5	-0,2	29,3	-1,9	-11,8	-10,5	-16,5	-18,2		8
10428	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	33,7	-10,5	-16,5	-18,2		11
10430	-0,6	-2,6	-24,5	-0,2	-8,2	-1,9	10,4	11,7	5,7	-18,2		9
10454	-0,6	-2,6	8,9	-0,2	-8,2	-1,9	54,9	-10,5	-16,5	-18,2		6

eSOTER map Chemnitz with soil component

zoomed in 1/6th of total pilot

eSOTER map Chemnitz with soil component

III. Case study: data poor environment Fes - landform units: Geomorphographic map (GMK) -

Parent material information, reclassification of Geological map (Schuler)

III. Case study: data poor environment Fes Terrain units merging GMK with PM = 88 classes – (first 3 digits landform unit / last 2 parent material)

III. Case study: data poor environment Fes 2 soil maps for soil component

problem 1: poor spatial resolution

problem 2: poor semantic information

eSOTER draft map

validation trip with massive experience!!

Bundesanstalt für Geowissenschaften und Rohstoffe

validation trip: outcomes

- The delineations of terrain units were traceable
- The content of the soil component wasn't reliable due to the quality of the soil data
- Nevertheless the eSOTER draft map can serve as a conceptual soil map

III. Conclusion

IV. Outlook

- In principle this procedure consistently implements the site factors relief and parent material
- Prestratification of the landscape according to soil regions required for larger mapping projects
- The conceptual of this soil components integrates existing soil data and SOTER mapping data of different scales and area coverage
- The validity to serve as a conceptual soil map is promising. Of course it needs further investigation by soil mappers

Derivation of random points

